⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 erfc.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/erfc.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  J. Theiler (modifications by G. Jungman) *//* * See Hart et al, Computer Approximations, John Wiley and Sons, New York (1968) * (This applies only to the erfc8 stuff, which is the part *  of the original code that survives. I have replaced much of *  the other stuff with Chebyshev fits. These are simpler and *  more precise than the original approximations. [GJ]) */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_erf.h"#include "check.h"#include "chebyshev.h"#include "cheb_eval.c"#define LogRootPi_  0.57236494292470008706static double erfc8_sum(double x){  /* estimates erfc(x) valid for 8 < x < 100 */  /* This is based on index 5725 in Hart et al */  static double P[] = {      2.97886562639399288862,      7.409740605964741794425,      6.1602098531096305440906,      5.019049726784267463450058,      1.275366644729965952479585264,      0.5641895835477550741253201704  };  static double Q[] = {      3.3690752069827527677,      9.608965327192787870698,      17.08144074746600431571095,      12.0489519278551290360340491,      9.396034016235054150430579648,      2.260528520767326969591866945,      1.0  };  double num=0.0, den=0.0;  int i;  num = P[5];  for (i=4; i>=0; --i) {      num = x*num + P[i];  }  den = Q[6];  for (i=5; i>=0; --i) {      den = x*den + Q[i];  }  return num/den;}inlinestatic double erfc8(double x){  double e;  e = erfc8_sum(x);  e *= exp(-x*x);  return e;}inlinestatic double log_erfc8(double x){  double e;  e = erfc8_sum(x);  e = log(e) - x*x;  return e;}#if 0/* Abramowitz+Stegun, 7.2.14 */static double erfcasympsum(double x){  int i;  double e = 1.;  double coef = 1.;  for (i=1; i<5; ++i) {    /* coef *= -(2*i-1)/(2*x*x); ??? [GJ] */    coef *= -(2*i+1)/(i*(4*x*x*x*x));    e += coef;    /*    if (fabs(coef) < 1.0e-15) break;    if (fabs(coef) > 1.0e10) break;        [GJ]: These tests are not useful. This function is only    used below. Took them out; they gum up the pipeline.    */  }  return e;}#endif /* 0 *//* Abramowitz+Stegun, 7.1.5 */static int erfseries(double x, gsl_sf_result * result){  double coef = x;  double e    = coef;  double del;  int k;  for (k=1; k<30; ++k) {    coef *= -x*x/k;    del   = coef/(2.0*k+1.0);    e += del;  }  result->val = 2.0 / M_SQRTPI * e;  result->err = 2.0 / M_SQRTPI * (fabs(del) + GSL_DBL_EPSILON);  return GSL_SUCCESS;}/* Chebyshev fit for erfc((t+1)/2), -1 < t < 1 */static double erfc_xlt1_data[20] = {  1.06073416421769980345174155056, -0.42582445804381043569204735291,  0.04955262679620434040357683080,  0.00449293488768382749558001242, -0.00129194104658496953494224761, -0.00001836389292149396270416979,  0.00002211114704099526291538556, -5.23337485234257134673693179020e-7, -2.78184788833537885382530989578e-7,  1.41158092748813114560316684249e-8,  2.72571296330561699984539141865e-9, -2.06343904872070629406401492476e-10, -2.14273991996785367924201401812e-11,  2.22990255539358204580285098119e-12,  1.36250074650698280575807934155e-13, -1.95144010922293091898995913038e-14, -6.85627169231704599442806370690e-16,  1.44506492869699938239521607493e-16,  2.45935306460536488037576200030e-18, -9.29599561220523396007359328540e-19};static cheb_series erfc_xlt1_cs = {  erfc_xlt1_data,  19,  -1, 1,  12};/* Chebyshev fit for erfc(x) exp(x^2), 1 < x < 5, x = 2t + 3, -1 < t < 1 */static double erfc_x15_data[25] = {  0.44045832024338111077637466616, -0.143958836762168335790826895326,  0.044786499817939267247056666937, -0.013343124200271211203618353102,  0.003824682739750469767692372556, -0.001058699227195126547306482530,  0.000283859419210073742736310108, -0.000073906170662206760483959432,  0.000018725312521489179015872934, -4.62530981164919445131297264430e-6,  1.11558657244432857487884006422e-6, -2.63098662650834130067808832725e-7,  6.07462122724551777372119408710e-8, -1.37460865539865444777251011793e-8,  3.05157051905475145520096717210e-9, -6.65174789720310713757307724790e-10,  1.42483346273207784489792999706e-10, -3.00141127395323902092018744545e-11,  6.22171792645348091472914001250e-12, -1.26994639225668496876152836555e-12,  2.55385883033257575402681845385e-13, -5.06258237507038698392265499770e-14,  9.89705409478327321641264227110e-15, -1.90685978789192181051961024995e-15,  3.50826648032737849245113757340e-16};static cheb_series erfc_x15_cs = {  erfc_x15_data,  24,  -1, 1,  16};/* Chebyshev fit for erfc(x) x exp(x^2), 5 < x < 10, x = (5t + 15)/2, -1 < t < 1 */static double erfc_x510_data[20] = {  1.11684990123545698684297865808,  0.003736240359381998520654927536, -0.000916623948045470238763619870,  0.000199094325044940833965078819, -0.000040276384918650072591781859,  7.76515264697061049477127605790e-6, -1.44464794206689070402099225301e-6,  2.61311930343463958393485241947e-7, -4.61833026634844152345304095560e-8,  8.00253111512943601598732144340e-9, -1.36291114862793031395712122089e-9,  2.28570483090160869607683087722e-10, -3.78022521563251805044056974560e-11,  6.17253683874528285729910462130e-12, -9.96019290955316888445830597430e-13,  1.58953143706980770269506726000e-13, -2.51045971047162509999527428316e-14,  3.92607828989125810013581287560e-15, -6.07970619384160374392535453420e-16,  9.12600607264794717315507477670e-17};static cheb_series erfc_x510_cs = {  erfc_x510_data,  19,  -1, 1,  12};#if 0inlinestatic doubleerfc_asymptotic(double x){  return exp(-x*x)/x * erfcasympsum(x) / M_SQRTPI;}inlinestatic doublelog_erfc_asymptotic(double x){  return log(erfcasympsum(x)/x) - x*x - LogRootPi_;}#endif /* 0 *//*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_erfc_e(double x, gsl_sf_result * result){  const double ax = fabs(x);  double e_val, e_err;  /* CHECK_POINTER(result) */  if(ax <= 1.0) {    double t = 2.0*ax - 1.0;    gsl_sf_result c;    cheb_eval_e(&erfc_xlt1_cs, t, &c);    e_val = c.val;    e_err = c.err;  }  else if(ax <= 5.0) {    double ex2 = exp(-x*x);    double t = 0.5*(ax-3.0);    gsl_sf_result c;    cheb_eval_e(&erfc_x15_cs, t, &c);    e_val = ex2 * c.val;    e_err = ex2 * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON);  }  else if(ax < 10.0) {    double exterm = exp(-x*x) / ax;    double t = (2.0*ax - 15.0)/5.0;    gsl_sf_result c;    cheb_eval_e(&erfc_x510_cs, t, &c);    e_val = exterm * c.val;    e_err = exterm * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON + GSL_DBL_EPSILON);  }  else {    e_val = erfc8(ax);    e_err = (x*x + 1.0) * GSL_DBL_EPSILON * fabs(e_val);  }  if(x < 0.0) {    result->val  = 2.0 - e_val;    result->err  = e_err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);  }  else {    result->val  = e_val;    result->err  = e_err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);  }  return GSL_SUCCESS;}int gsl_sf_log_erfc_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x*x < 10.0*GSL_ROOT6_DBL_EPSILON) {    const double y = x / M_SQRTPI;    /* series for -1/2 Log[Erfc[Sqrt[Pi] y]] */    const double c3 = (4.0 - M_PI)/3.0;    const double c4 = 2.0*(1.0 - M_PI/3.0);    const double c5 = -0.001829764677455021;  /* (96.0 - 40.0*M_PI + 3.0*M_PI*M_PI)/30.0  */    const double c6 =  0.02629651521057465;   /* 2.0*(120.0 - 60.0*M_PI + 7.0*M_PI*M_PI)/45.0 */    const double c7 = -0.01621575378835404;    const double c8 =  0.00125993961762116;    const double c9 =  0.00556964649138;    const double c10 = -0.0045563339802;    const double c11 =  0.0009461589032;    const double c12 =  0.0013200243174;    const double c13 = -0.00142906;    const double c14 =  0.00048204;    double series = c8 + y*(c9 + y*(c10 + y*(c11 + y*(c12 + y*(c13 + c14*y)))));    series = y*(1.0 + y*(1.0 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*series)))))));    result->val = -2.0 * series;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  /*  don't like use of log1p(); added above series stuff for small x instead, should be ok [GJ]  else if (fabs(x) < 1.0) {    gsl_sf_result result_erf;    gsl_sf_erf_e(x, &result_erf);    result->val  = log1p(-result_erf.val);    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  */  else if(x > 8.0) {    result->val = log_erfc8(x);    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    gsl_sf_result result_erfc;    gsl_sf_erfc_e(x, &result_erfc);    result->val  = log(result_erfc.val);    result->err  = fabs(result_erfc.err / result_erfc.val);    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }}int gsl_sf_erf_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(fabs(x) < 1.0) {    return erfseries(x, result);  }  else {    gsl_sf_result result_erfc;    gsl_sf_erfc_e(x, &result_erfc);    result->val  = 1.0 - result_erfc.val;    result->err  = result_erfc.err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }}int gsl_sf_erf_Z_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  {    const double ex2 = exp(-x*x/2.0);    result->val  = ex2 / (M_SQRT2 * M_SQRTPI);    result->err  = fabs(x * result->val) * GSL_DBL_EPSILON;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    CHECK_UNDERFLOW(result);    return GSL_SUCCESS;  }}int gsl_sf_erf_Q_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  {    gsl_sf_result result_erfc;    int stat = gsl_sf_erfc_e(x/M_SQRT2, &result_erfc);    result->val  = 0.5 * result_erfc.val;    result->err  = 0.5 * result_erfc.err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat;  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_erfc(double x){  EVAL_RESULT(gsl_sf_erfc_e(x, &result));}double gsl_sf_log_erfc(double x){  EVAL_RESULT(gsl_sf_log_erfc_e(x, &result));}double gsl_sf_erf(double x){  EVAL_RESULT(gsl_sf_erf_e(x, &result));}double gsl_sf_erf_Z(double x){  EVAL_RESULT(gsl_sf_erf_Z_e(x, &result));}double gsl_sf_erf_Q(double x){  EVAL_RESULT(gsl_sf_erf_Q_e(x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -