⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hyperg.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/hyperg.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman *//* Miscellaneous implementations of use * for evaluation of hypergeometric functions. */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_exp.h"#include "gsl_sf_gamma.h"#include "error.h"#include "hyperg.h"#define SUM_LARGE  (1.0e-5*GSL_DBL_MAX)intgsl_sf_hyperg_1F1_series_e(const double a, const double b, const double x,                              gsl_sf_result * result                              ){  double an  = a;  double bn  = b;  double n   = 1.0;  double del = 1.0;  double abs_del = 1.0;  double max_abs_del = 1.0;  double sum_val = 1.0;  double sum_err = 0.0;  while(abs_del/fabs(sum_val) > GSL_DBL_EPSILON) {    double u, abs_u;    if(bn == 0.0) {      DOMAIN_ERROR(result);    }    if(an == 0.0 || n > 1000.0) {      result->val  = sum_val;      result->err  = sum_err;      result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val);      return GSL_SUCCESS;    }    u = x * (an/(bn*n));    abs_u = fabs(u);    if(abs_u > 1.0 && max_abs_del > GSL_DBL_MAX/abs_u) {      result->val = sum_val;      result->err = fabs(sum_val);      GSL_ERROR ("overflow", GSL_EOVRFLW);    }    del *= u;    sum_val += del;    if(fabs(sum_val) > SUM_LARGE) {      result->val = sum_val;      result->err = fabs(sum_val);      GSL_ERROR ("overflow", GSL_EOVRFLW);    }    abs_del = fabs(del);    max_abs_del = GSL_MAX_DBL(abs_del, max_abs_del);    sum_err += 2.0*GSL_DBL_EPSILON*abs_del;    an += 1.0;    bn += 1.0;    n  += 1.0;  }  result->val  = sum_val;  result->err  = sum_err;  result->err += abs_del;  result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val);  return GSL_SUCCESS;}intgsl_sf_hyperg_1F1_large_b_e(const double a, const double b, const double x, gsl_sf_result * result){  if(fabs(x/b) < 1.0) {    const double u = x/b;    const double v = 1.0/(1.0-u);    const double pre = pow(v,a);    const double uv  = u*v;    const double uv2 = uv*uv;    const double t1  = a*(a+1.0)/(2.0*b)*uv2;    const double t2a = a*(a+1.0)/(24.0*b*b)*uv2;    const double t2b = 12.0 + 16.0*(a+2.0)*uv + 3.0*(a+2.0)*(a+3.0)*uv2;    const double t2  = t2a*t2b;    result->val  = pre * (1.0 - t1 + t2);    result->err  = pre * GSL_DBL_EPSILON * (1.0 + fabs(t1) + fabs(t2));    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    DOMAIN_ERROR(result);  }}intgsl_sf_hyperg_U_large_b_e(const double a, const double b, const double x,                             gsl_sf_result * result,			     double * ln_multiplier			     ){  double N   = floor(b);  /* b = N + eps */  double eps = b - N;    if(fabs(eps) < GSL_SQRT_DBL_EPSILON) {    double lnpre_val;    double lnpre_err;    gsl_sf_result M;    if(b > 1.0) {      double tmp = (1.0-b)*log(x);      gsl_sf_result lg_bm1;      gsl_sf_result lg_a;      gsl_sf_lngamma_e(b-1.0, &lg_bm1);      gsl_sf_lngamma_e(a, &lg_a);      lnpre_val = tmp + x + lg_bm1.val - lg_a.val;      lnpre_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(x) + fabs(tmp));      gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, -x, &M);    }    else {      gsl_sf_result lg_1mb;      gsl_sf_result lg_1pamb;      gsl_sf_lngamma_e(1.0-b, &lg_1mb);      gsl_sf_lngamma_e(1.0+a-b, &lg_1pamb);      lnpre_val = lg_1mb.val - lg_1pamb.val;      lnpre_err = lg_1mb.err + lg_1pamb.err;      gsl_sf_hyperg_1F1_large_b_e(a, b, x, &M);    }    if(lnpre_val > GSL_LOG_DBL_MAX-10.0) {      result->val  = M.val;      result->err  = M.err;      *ln_multiplier = lnpre_val;      GSL_ERROR ("overflow", GSL_EOVRFLW);    }    else {      gsl_sf_result epre;      int stat_e = gsl_sf_exp_err_e(lnpre_val, lnpre_err, &epre);      result->val  = epre.val * M.val;      result->err  = epre.val * M.err + epre.err * fabs(M.val);      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);      *ln_multiplier = 0.0;      return stat_e;    }  }  else {    double omb_lnx = (1.0-b)*log(x);    gsl_sf_result lg_1mb;    double sgn_1mb;    gsl_sf_result lg_1pamb;  double sgn_1pamb;    gsl_sf_result lg_bm1;    double sgn_bm1;    gsl_sf_result lg_a;      double sgn_a;    gsl_sf_result M1, M2;    double lnpre1_val, lnpre2_val;    double lnpre1_err, lnpre2_err;    double sgpre1, sgpre2;    gsl_sf_hyperg_1F1_large_b_e(    a,     b, x, &M1);    gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, x, &M2);    gsl_sf_lngamma_sgn_e(1.0-b,   &lg_1mb,   &sgn_1mb);    gsl_sf_lngamma_sgn_e(1.0+a-b, &lg_1pamb, &sgn_1pamb);    gsl_sf_lngamma_sgn_e(b-1.0, &lg_bm1, &sgn_bm1);    gsl_sf_lngamma_sgn_e(a,     &lg_a,   &sgn_a);    lnpre1_val = lg_1mb.val - lg_1pamb.val;    lnpre1_err = lg_1mb.err + lg_1pamb.err;    lnpre2_val = lg_bm1.val - lg_a.val - omb_lnx - x;    lnpre2_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(omb_lnx)+fabs(x));    sgpre1 = sgn_1mb * sgn_1pamb;    sgpre2 = sgn_bm1 * sgn_a;    if(lnpre1_val > GSL_LOG_DBL_MAX-10.0 || lnpre2_val > GSL_LOG_DBL_MAX-10.0) {      double max_lnpre_val = GSL_MAX(lnpre1_val,lnpre2_val);      double max_lnpre_err = GSL_MAX(lnpre1_err,lnpre2_err);      double lp1 = lnpre1_val - max_lnpre_val;      double lp2 = lnpre2_val - max_lnpre_val;      double t1  = sgpre1*exp(lp1);      double t2  = sgpre2*exp(lp2);      result->val  = t1*M1.val + t2*M2.val;      result->err  = fabs(t1)*M1.err + fabs(t2)*M2.err;      result->err += GSL_DBL_EPSILON * exp(max_lnpre_err) * (fabs(t1*M1.val) + fabs(t2*M2.val));      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);      *ln_multiplier = max_lnpre_val;      GSL_ERROR ("overflow", GSL_EOVRFLW);    }    else {      double t1 = sgpre1*exp(lnpre1_val);      double t2 = sgpre2*exp(lnpre2_val);      result->val  = t1*M1.val + t2*M2.val;      result->err  = fabs(t1) * M1.err + fabs(t2)*M2.err;      result->err += GSL_DBL_EPSILON * (exp(lnpre1_err)*fabs(t1*M1.val) + exp(lnpre2_err)*fabs(t2*M2.val));      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);      *ln_multiplier = 0.0;      return GSL_SUCCESS;    }  }}/* [Carlson, p.109] says the error in truncating this asymptotic series * is less than the absolute value of the first neglected term. * * A termination argument is provided, so that the series will * be summed at most up to n=n_trunc. If n_trunc is set negative, * then the series is summed until it appears to start diverging. */intgsl_sf_hyperg_2F0_series_e(const double a, const double b, const double x,                              int n_trunc,                              gsl_sf_result * result                              ){  const int maxiter = 2000;  double an = a;  double bn = b;    double n   = 1.0;  double sum = 1.0;  double del = 1.0;  double abs_del = 1.0;  double max_abs_del = 1.0;  double last_abs_del = 1.0;    while(abs_del/fabs(sum) > GSL_DBL_EPSILON && n < maxiter) {    double u = an * (bn/n * x);    double abs_u = fabs(u);    if(abs_u > 1.0 && (max_abs_del > GSL_DBL_MAX/abs_u)) {      result->val = sum;      result->err = fabs(sum);      GSL_ERROR ("overflow", GSL_EOVRFLW);    }    del *= u;    sum += del;    abs_del = fabs(del);    if(abs_del > last_abs_del) break; /* series is probably starting to grow */    last_abs_del = abs_del;    max_abs_del  = GSL_MAX(abs_del, max_abs_del);    an += 1.0;    bn += 1.0;    n  += 1.0;        if(an == 0.0 || bn == 0.0) break;        /* series terminated */        if(n_trunc >= 0 && n >= n_trunc) break;  /* reached requested timeout */  }  result->val = sum;  result->err = GSL_DBL_EPSILON * n + abs_del;  if(n >= maxiter)    GSL_ERROR ("error", GSL_EMAXITER);  else    return GSL_SUCCESS;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -