⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lambert.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/lambert.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_lambert.h"/* Started with code donated by K. Briggs; added * error estimates, GSL foo, and minor tweaks. * Some Lambert-ology from *  [Corless, Gonnet, Hare, and Jeffrey, "On Lambert's W Function".] *//* Halley iteration (eqn. 5.12, Corless et al) */static inthalley_iteration(  double x,  double w_initial,  unsigned int max_iters,  gsl_sf_result * result  ){  double w = w_initial;  unsigned int i;  for(i=0; i<max_iters; i++) {    double tol;    const double e = exp(w);    const double p = w + 1.0;    double t = w*e - x;    /* printf("FOO: %20.16g  %20.16g\n", w, t); */    if (w > 0) {      t = (t/p)/e;  /* Newton iteration */    } else {      t /= e*p - 0.5*(p + 1.0)*t/p;  /* Halley iteration */    };    w -= t;    tol = GSL_DBL_EPSILON * GSL_MAX_DBL(fabs(w), 1.0/(fabs(p)*e));    if(fabs(t) < tol)    {      result->val = w;      result->err = 2.0*tol;      return GSL_SUCCESS;    }  }  /* should never get here */  result->val = w;  result->err = fabs(w);  return GSL_EMAXITER;}/* series which appears for q near zero; * only the argument is different for the different branches */static doubleseries_eval(double r){  static const double c[12] = {    -1.0,     2.331643981597124203363536062168,    -1.812187885639363490240191647568,     1.936631114492359755363277457668,    -2.353551201881614516821543561516,     3.066858901050631912893148922704,    -4.175335600258177138854984177460,     5.858023729874774148815053846119,    -8.401032217523977370984161688514,     12.250753501314460424,    -18.100697012472442755,     27.029044799010561650  };  const double t_8 = c[8] + r*(c[9] + r*(c[10] + r*c[11]));  const double t_5 = c[5] + r*(c[6] + r*(c[7]  + r*t_8));  const double t_1 = c[1] + r*(c[2] + r*(c[3]  + r*(c[4] + r*t_5)));  return c[0] + r*t_1;}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_lambert_W0_e(double x, gsl_sf_result * result){  const double one_over_E = 1.0/M_E;  const double q = x + one_over_E;  if(x == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(q < 0.0) {    /* Strictly speaking this is an error. But because of the     * arithmetic operation connecting x and q, I am a little     * lenient in case of some epsilon overshoot. The following     * answer is quite accurate in that case. Anyway, we have     * to return GSL_EDOM.     */    result->val = -1.0;    result->err =  sqrt(-q);    return GSL_EDOM;  }  else if(q == 0.0) {    result->val = -1.0;    result->err =  GSL_DBL_EPSILON; /* cannot error is zero, maybe q == 0 by "accident" */    return GSL_SUCCESS;  }  else if(q < 1.0e-03) {    /* series near -1/E in sqrt(q) */    const double r = sqrt(q);    result->val = series_eval(r);    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    static const unsigned int MAX_ITERS = 10;    double w;    if (x < 1.0) {      /* obtain initial approximation from series near x=0;       * no need for extra care, since the Halley iteration       * converges nicely on this branch       */      const double p = sqrt(2.0 * M_E * q);      w = -1.0 + p*(1.0 + p*(-1.0/3.0 + p*11.0/72.0));     }    else {      /* obtain initial approximation from rough asymptotic */      w = log(x);      if(x > 3.0) w -= log(w);    }    return halley_iteration(x, w, MAX_ITERS, result);  }}intgsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result){  if(x > 0.0) {    return gsl_sf_lambert_W0_e(x, result);  }  else if(x == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else {    static const unsigned int MAX_ITERS = 32;    const double one_over_E = 1.0/M_E;    const double q = x + one_over_E;    double w;    if (q < 0.0) {      /* As in the W0 branch above, return some reasonable answer anyway. */      result->val = -1.0;       result->err =  sqrt(-q);      return GSL_EDOM;    }    if(x < -1.0e-6) {      /* Obtain initial approximation from series about q = 0,       * as long as we're not very close to x = 0.       * Use full series and try to bail out if q is too small,       * since the Halley iteration has bad convergence properties       * in finite arithmetic for q very small, because the       * increment alternates and p is near zero.       */      const double r = -sqrt(q);      w = series_eval(r);      if(q < 3.0e-3) {        /* this approximation is good enough */        result->val = w;        result->err = 5.0 * GSL_DBL_EPSILON * fabs(w);        return GSL_SUCCESS;      }    }    else {      /* Obtain initial approximation from asymptotic near zero. */      const double L_1 = log(-x);      const double L_2 = log(-L_1);      w = L_1 - L_2 + L_2/L_1;    }    return halley_iteration(x, w, MAX_ITERS, result);  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_lambert_W0(double x){  EVAL_RESULT(gsl_sf_lambert_W0_e(x, &result));}double gsl_sf_lambert_Wm1(double x){  EVAL_RESULT(gsl_sf_lambert_Wm1_e(x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -