📄 log.c
字号:
/* specfunc/log.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_log.h"#include "error.h"#include "chebyshev.h"#include "cheb_eval.c"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* Chebyshev expansion for log(1 + x(t))/x(t) * * x(t) = (4t-1)/(2(4-t)) * t(x) = (8x+1)/(2(x+2)) * -1/2 < x < 1/2 * -1 < t < 1 */static double lopx_data[21] = { 2.16647910664395270521272590407, -0.28565398551049742084877469679, 0.01517767255690553732382488171, -0.00200215904941415466274422081, 0.00019211375164056698287947962, -0.00002553258886105542567601400, 2.9004512660400621301999384544e-06, -3.8873813517057343800270917900e-07, 4.7743678729400456026672697926e-08, -6.4501969776090319441714445454e-09, 8.2751976628812389601561347296e-10, -1.1260499376492049411710290413e-10, 1.4844576692270934446023686322e-11, -2.0328515972462118942821556033e-12, 2.7291231220549214896095654769e-13, -3.7581977830387938294437434651e-14, 5.1107345870861673561462339876e-15, -7.0722150011433276578323272272e-16, 9.7089758328248469219003866867e-17, -1.3492637457521938883731579510e-17, 1.8657327910677296608121390705e-18};static cheb_series lopx_cs = { lopx_data, 20, -1, 1, 10};/* Chebyshev expansion for (log(1 + x(t)) - x(t))/x(t)^2 * * x(t) = (4t-1)/(2(4-t)) * t(x) = (8x+1)/(2(x+2)) * -1/2 < x < 1/2 * -1 < t < 1 */static double lopxmx_data[20] = { -1.12100231323744103373737274541, 0.19553462773379386241549597019, -0.01467470453808083971825344956, 0.00166678250474365477643629067, -0.00018543356147700369785746902, 0.00002280154021771635036301071, -2.8031253116633521699214134172e-06, 3.5936568872522162983669541401e-07, -4.6241857041062060284381167925e-08, 6.0822637459403991012451054971e-09, -8.0339824424815790302621320732e-10, 1.0751718277499375044851551587e-10, -1.4445310914224613448759230882e-11, 1.9573912180610336168921438426e-12, -2.6614436796793061741564104510e-13, 3.6402634315269586532158344584e-14, -4.9937495922755006545809120531e-15, 6.8802890218846809524646902703e-16, -9.5034129794804273611403251480e-17, 1.3170135013050997157326965813e-17};static cheb_series lopxmx_cs = { lopxmx_data, 19, -1, 1, 9};/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/#ifndef HIDE_INLINE_STATICintgsl_sf_log_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else { result->val = log(x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}intgsl_sf_log_abs_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x == 0.0) { DOMAIN_ERROR(result); } else { result->val = log(fabs(x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}#endifintgsl_sf_complex_log_e(const double zr, const double zi, gsl_sf_result * lnr, gsl_sf_result * theta){ /* CHECK_POINTER(lnr) */ /* CHECK_POINTER(theta) */ if(zr != 0.0 || zi != 0.0) { const double ax = fabs(zr); const double ay = fabs(zi); const double min = GSL_MIN(ax, ay); const double max = GSL_MAX(ax, ay); lnr->val = log(max) + 0.5 * log(1.0 + (min/max)*(min/max)); lnr->err = 2.0 * GSL_DBL_EPSILON * fabs(lnr->val); theta->val = atan2(zi, zr); theta->err = GSL_DBL_EPSILON * fabs(lnr->val); return GSL_SUCCESS; } else { DOMAIN_ERROR_2(lnr, theta); }}intgsl_sf_log_1plusx_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(fabs(x) < GSL_ROOT6_DBL_EPSILON) { const double c1 = -0.5; const double c2 = 1.0/3.0; const double c3 = -1.0/4.0; const double c4 = 1.0/5.0; const double c5 = -1.0/6.0; const double c6 = 1.0/7.0; const double c7 = -1.0/8.0; const double c8 = 1.0/9.0; const double c9 = -1.0/10.0; const double t = c5 + x*(c6 + x*(c7 + x*(c8 + x*c9))); result->val = x * (1.0 + x*(c1 + x*(c2 + x*(c3 + x*(c4 + x*t))))); result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(fabs(x) < 0.5) { double t = 0.5*(8.0*x + 1.0)/(x+2.0); gsl_sf_result c; cheb_eval_e(&lopx_cs, t, &c); result->val = x * c.val; result->err = fabs(x * c.err); return GSL_SUCCESS; } else { result->val = log(1.0 + x); result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}intgsl_sf_log_1plusx_mx_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(fabs(x) < GSL_ROOT5_DBL_EPSILON) { const double c1 = -0.5; const double c2 = 1.0/3.0; const double c3 = -1.0/4.0; const double c4 = 1.0/5.0; const double c5 = -1.0/6.0; const double c6 = 1.0/7.0; const double c7 = -1.0/8.0; const double c8 = 1.0/9.0; const double c9 = -1.0/10.0; const double t = c5 + x*(c6 + x*(c7 + x*(c8 + x*c9))); result->val = x*x * (c1 + x*(c2 + x*(c3 + x*(c4 + x*t)))); result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(fabs(x) < 0.5) { double t = 0.5*(8.0*x + 1.0)/(x+2.0); gsl_sf_result c; cheb_eval_e(&lopxmx_cs, t, &c); result->val = x*x * c.val; result->err = x*x * c.err; return GSL_SUCCESS; } else { const double lterm = log(1.0 + x); result->val = lterm - x; result->err = GSL_DBL_EPSILON * (fabs(lterm) + fabs(x)); return GSL_SUCCESS; }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_log(const double x){ EVAL_RESULT(gsl_sf_log_e(x, &result));}double gsl_sf_log_abs(const double x){ EVAL_RESULT(gsl_sf_log_abs_e(x, &result));}double gsl_sf_log_1plusx(const double x){ EVAL_RESULT(gsl_sf_log_1plusx_e(x, &result));}double gsl_sf_log_1plusx_mx(const double x){ EVAL_RESULT(gsl_sf_log_1plusx_mx_e(x, &result));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -