⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 levin_utrunc.c

📁 开放gsl矩阵运算
💻 C
字号:
/* sum/levin_utrunc.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_test.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sum.h>intgsl_sum_levin_utrunc_accel (const double *array,                            const size_t array_size,                            gsl_sum_levin_utrunc_workspace * w,                            double *sum_accel, double *abserr_trunc){  return gsl_sum_levin_utrunc_minmax (array, array_size,				      0, array_size - 1,				      w, sum_accel, abserr_trunc);}intgsl_sum_levin_utrunc_minmax (const double *array,			     const size_t array_size,			     const size_t min_terms,			     const size_t max_terms,			     gsl_sum_levin_utrunc_workspace * w,			     double *sum_accel, double *abserr_trunc){  if (array_size == 0)    {      *sum_accel = 0.0;      *abserr_trunc = 0.0;      w->sum_plain = 0.0;      w->terms_used = 0;      return GSL_SUCCESS;    }  else if (array_size == 1)    {      *sum_accel = array[0];      *abserr_trunc = GSL_POSINF;      w->sum_plain = array[0];      w->terms_used = 1;      return GSL_SUCCESS;    }  else    {      const double SMALL = 0.01;      const size_t nmax = GSL_MAX (max_terms, array_size) - 1;      double trunc_n = 0.0, trunc_nm1 = 0.0;      double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0;      double result_n = 0.0, result_nm1 = 0.0;      size_t n;      int better = 0;      int before = 0;      int converging = 0;      double least_trunc = GSL_DBL_MAX;      double result_least_trunc;      /* Calculate specified minimum number of terms. No convergence         tests are made, and no truncation information is stored. */      for (n = 0; n < min_terms; n++)	{	  const double t = array[n];	  result_nm1 = result_n;	  gsl_sum_levin_utrunc_step (t, n, w, &result_n);	}      /* Assume the result after the minimum calculation is the best. */      result_least_trunc = result_n;      /* Calculate up to maximum number of terms. Check truncation         condition. */      for (; n <= nmax; n++)	{	  const double t = array[n];	  result_nm1 = result_n;	  gsl_sum_levin_utrunc_step (t, n, w, &result_n);	  /* Compute the truncation error directly */	  actual_trunc_nm1 = actual_trunc_n;	  actual_trunc_n = fabs (result_n - result_nm1);	  /* Average results to make a more reliable estimate of the	     real truncation error */	  trunc_nm1 = trunc_n;	  trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1);	  /* Determine if we are in the convergence region. */	  better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n));	  converging = converging || (better && before);	  before = better;	  if (converging)	    {	      if (trunc_n < least_trunc)		{		  /* Found a low truncation point in the convergence		     region. Save it. */		  least_trunc = trunc_n;		  result_least_trunc = result_n;		}	      if (fabs (trunc_n / result_n) < 10.0 * GSL_MACH_EPS)		break;	    }	}      if (converging)	{	  /* Stopped in the convergence region. Return result and	     error estimate. */	  *sum_accel = result_least_trunc;	  *abserr_trunc = least_trunc;	  w->terms_used = n;	  return GSL_SUCCESS;	}      else	{	  /* Never reached the convergence region. Use the last	     calculated values. */	  *sum_accel = result_n;	  *abserr_trunc = trunc_n;	  w->terms_used = n;	  return GSL_SUCCESS;	}    }}intgsl_sum_levin_utrunc_step (const double term,			   const size_t n,			   gsl_sum_levin_utrunc_workspace * w, double *sum_accel){  if (term == 0.0)    {      /* This is actually harmless when treated in this way. A term         which is exactly zero is simply ignored; the state is not         changed. We return GSL_EZERODIV as an indicator that this         occured. */      return GSL_EZERODIV;    }  else if (n == 0)    {      *sum_accel = term;      w->sum_plain = term;      w->q_den[0] = 1.0 / term;      w->q_num[0] = 1.0;      return GSL_SUCCESS;    }  else    {      double factor = 1.0;      double ratio = (double) n / (n + 1.0);      int j;      w->sum_plain += term;      w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0));      w->q_num[n] = w->sum_plain * w->q_den[n];      for (j = n - 1; j >= 0; j--)	{	  double c = factor * (j + 1) / (n + 1);	  factor *= ratio;	  w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j];	  w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j];	}      *sum_accel = w->q_num[0] / w->q_den[0];      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -