⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multimin.texi

📁 开放gsl矩阵运算
💻 TEXI
📖 第 1 页 / 共 2 页
字号:
@cindex minimization, multidimensionalThis chapter describes routines for finding minima of arbitrarymultidimensional functions.  The library provides low level componentsfor a variety of iterative minimizers and convergence tests.  These canbe combined by the user to achieve the desired solution, while providingfull access to the intermediate steps of the algorithms.  Each class ofmethods uses the same framework, so that you can switch betweenminimizers at runtime without needing to recompile your program.  Eachinstance of a minimizer keeps track of its own state, allowing theminimizers to be used in multi-threaded programs. The minimizationalgorithms can be used to maximize a function by inverting its sign.The header file @file{gsl_multimin.h} contains prototypes for theminimization functions and related declarations.  @menu* Multimin Overview::       * Multimin Caveats::        * Initializing the Multidimensional Minimizer::  * Providing a function to minimize::  * Multimin Iteration::      * Multimin Stopping Criteria::  * Multimin Algorithms::     * Multimin Examples::       * Multimin References and Further Reading::  @end menu@node Multimin Overview@section OverviewThe problem of multidimensional minimization requires finding a point@math{x} such that the scalar function,@tex\beforedisplay$$f(x_1, \dots, x_n)$$\afterdisplay@end tex@ifinfo@examplef(x_1, @dots{}, x_n)@end example@end ifinfo@noindenttakes a value which is lower than at any neighboring point. For smoothfunctions the gradient @math{g = \nabla f} vanishes at the minimum. Ingeneral there are no bracketing methods available for the minimizationof @math{n}-dimensional functions.  All algorithms proceed from aninitial guess using a search algorithm which attempts to move in adownhill direction. A one-dimensional line minimisation is performedalong this direction until the lowest point is found to a suitabletolerance. The search direction is then updated with local informationfrom the function and its derivatives, and the whole process repeateduntil the true @math{n}-dimensional minimum is found.Several minimization algorithms are available within a singleframework. The user provides a high-level driver for the algorithms, andthe library provides the individual functions necessary for each of thesteps.  There are three main phases of the iteration.  The steps are,@itemize @bullet@iteminitialize minimizer state, @var{s}, for algorithm @var{T}@itemupdate @var{s} using the iteration @var{T}@itemtest @var{s} for convergence, and repeat iteration if necessary@end itemize@noindentEach iteration step consists either of an improvement to theline-mimisation in the current direction or an update to the searchdirection itself.  The state for the minimizers is held in a@code{gsl_multimin_fdfminimizer} struct.@node Multimin Caveats@section Caveats@cindex Multimin, caveatsNote that the minimization algorithms can only search for one localminimum at a time.  When there are several local minima in the searcharea, the first minimum to be found will be returned; however it isdifficult to predict which of the minima this will be.  In most cases,no error will be reported if you try to find a local minimum in an areawhere there is more than one.It is also important to note that the minimization algorithms find localminima; there is no way to determine whether a minimum is a globalminimum of the function in question.@node Initializing the Multidimensional Minimizer@section Initializing the Multidimensional MinimizerThe following function initializes a multidimensional minimizer.  Theminimizer itself depends only on the dimension of the problem and thealgorithm and can be reused for different problems.@deftypefun {gsl_multimin_fdfminimizer *} gsl_multimin_fdfminimizer_alloc (const gsl_multimin_fdfminimizer_type *@var{T}, size_t @var{n})This function returns a pointer to a a newly allocated instance of aminimizer of type @var{T} for an @var{n}-dimension function.  If thereis insufficient memory to create the minimizer then the function returnsa null pointer and the error handler is invoked with an error code of@code{GSL_ENOMEM}.@end deftypefun@deftypefun int gsl_multimin_fdfminimizer_set (gsl_multimin_fdfminimizer * @var{s}, gsl_multimin_function_fdf *@var{fdf}, const gsl_vector * @var{x}, double @var{step_size}, double @var{tol})This function initializes the minimizer @var{s} to minimize the function@var{fdf} starting from the initial point @var{x}.  The size of thefirst trial step is given by @var{step_size}.  The accuracy of the lineminimization is specified by @var{tol}.  The precise meaning of thisparameter depends on the method used.  Typically the line minimizationis considered successful if the gradient of the function @math{g} isorthogonal to the current search direction @math{p} to a relativeaccuracy of @var{tol}, where @c{$p\cdot g < tol |p| |g|$} @math{dot(p,g) < tol |p| |g|}.@end deftypefun@deftypefun void gsl_multimin_fdfminimizer_free (gsl_multimin_fdfminimizer *@var{s})This function frees all the memory associated with the minimizer@var{s}.@end deftypefun@deftypefun {const char *} gsl_multimin_fdfminimizer_name (const gsl_multimin_fdfminimizer * @var{s})This function returns a pointer to the name of the minimizer.  For example,@exampleprintf("s is a '%s' minimizer\n",        gsl_multimin_fdfminimizer_name (s));@end example@noindentwould print something like @code{s is a 'conjugate_pr' minimizer}.@end deftypefun@node Providing a function to minimize@section Providing a function to minimizeYou must provide a parametric function of @math{n} variables for theminimizers to operate on.  You also need to provide a routine whichcalculates the gradient of the function and a third routine whichcalculates both the function value and the gradient together.  In orderto allow for general parameters the functions are defined by thefollowing data type:@deftp {Data Type} gsl_multimin_function_fdfThis data type defines a general function of @math{n} variables withparameters and the corresponding gradient vector of derivatives,@table @code@item double (* f) (const gsl_vector * @var{x}, void * @var{params})this function should return the result@c{$f(x,\hbox{\it params})$}@math{f(x,params)} for argument @var{x} and parameters @var{params}.@item int (* df) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{g})this function should store the @var{n}-dimensional gradient@c{$g_i = \partial f(x,\hbox{\it params}) / \partial x_i$}@math{g_i = d f(x,params) / d x_i} in the vector @var{g} for argument @var{x} and parameters @var{params}, returning an appropriate error code if thefunction cannot be computed.@item int (* fdf) (const gsl_vector * @var{x}, void * @var{params}, double * f, gsl_vector * @var{g})This function should set the values of the @var{f} and @var{g} as above,for arguments @var{x} and parameters @var{params}.  This function providesan optimization of the separate functions for @math{f(x)} and @math{g(x)} -- it is always faster to compute the function and its derivative at thesame time. @item size_t @var{n}the dimension of the system, i.e. the number of components of thevectors @var{x}.@item void * @var{params}a pointer to the parameters of the function.@end table@end deftp@noindentThe following example function defines a simple paraboloid with twoparameters,@example/* Paraboloid centered on (dp[0],dp[1]) */doublemy_f (const gsl_vector *v, void *params)@{  double x, y;  double *dp = (double *)params;    x = gsl_vector_get(v, 0);  y = gsl_vector_get(v, 1);   return 10.0 * (x - dp[0]) * (x - dp[0]) +           20.0 * (y - dp[1]) * (y - dp[1]) + 30.0; @}/* The gradient of f, df = (df/dx, df/dy). */void my_df (const gsl_vector *v, void *params,        gsl_vector *df)@{  double x, y;  double *dp = (double *)params;    x = gsl_vector_get(v, 0);  y = gsl_vector_get(v, 1);   gsl_vector_set(df, 0, 20.0 * (x - dp[0]));  gsl_vector_set(df, 1, 40.0 * (y - dp[1]));@}/* Compute both f and df together. */void my_fdf (const gsl_vector *x, void *params,         double *f, gsl_vector *df) @{  *f = my_f(x, params);   my_df(x, params, df);@}@end example@noindentThe function can be initialized using the following code,@examplegsl_multimin_function_fdf my_func;double p[2] = @{ 1.0, 2.0 @}; /* center at (1,2) */my_func.f = &my_f;my_func.df = &my_df;my_func.fdf = &my_fdf;my_func.n = 2;my_func.params = (void *)p;@end example@node Multimin Iteration@section IterationThe following function drives the iteration of each algorithm.  Thefunction performs one iteration to update the state of the minimizer.The same function works for all minimizers so that different methods can

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -