⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 specfunc-expint.texi

📁 开放gsl矩阵运算
💻 TEXI
字号:
@cindex exponential integralsInformation on the exponential integrals can be found in Abramowitz &Stegun, Chapter 5.  These functions are declared in the header file@file{gsl_sf_expint.h}.@menu* Exponential Integral::        * Ei(x)::                       * Hyperbolic Integrals::        * Ei_3(x)::                     * Trigonometric Integrals::     * Arctangent Integral::         @end menu@node Exponential Integral@subsection Exponential Integral@deftypefun double gsl_sf_expint_E1 (double @var{x})@deftypefunx int gsl_sf_expint_E1_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the exponential integral @math{E_1(x)},@tex\beforedisplay$$E_1(x) := Re \int_1^\infty dt \exp(-xt)/t.$$\afterdisplay@end tex@ifinfo@exampleE_1(x) := Re \int_1^\infty dt \exp(-xt)/t.@end example@end ifinfo@noindent@comment Domain: x != 0.0@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_expint_E2 (double @var{x})@deftypefunx int gsl_sf_expint_E2_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the second-order exponential integral @math{E_2(x)},@tex\beforedisplay$$E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2.$$\afterdisplay@end tex@ifinfo@exampleE_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2.@end example@end ifinfo@noindent@comment Domain: x != 0.0@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@node Ei(x)@subsection Ei(x)@deftypefun double gsl_sf_expint_Ei (double @var{x})@deftypefunx int gsl_sf_expint_Ei_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the exponential integral @math{E_i(x)},@tex\beforedisplay$$Ei(x) := PV(\int_{-x}^\infty dt \exp(-t)/t)$$\afterdisplay@end tex@ifinfo@exampleEi(x) := PV(\int_@{-x@}^\infty dt \exp(-t)/t)@end example@end ifinfo@noindentwhere @math{PV} denotes the principal value of the integral.@comment Domain: x != 0.0@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@node Hyperbolic Integrals@subsection Hyperbolic Integrals@deftypefun double gsl_sf_Shi (double @var{x})@deftypefunx int gsl_sf_Shi_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the integral @math{Shi(x) = \int_0^x dt \sinh(t)/t}.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_Chi (double @var{x})@deftypefunx int gsl_sf_Chi_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the integral @math{ Chi(x) := Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh[t]-1)/t] }, where @math{\gamma_E} is the Euler constant (available as the macro @code{M_EULER}).@comment Domain: x != 0.0@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@node Ei_3(x)@subsection Ei_3(x)@deftypefun double gsl_sf_expint_3 (double @var{x})@deftypefunx int gsl_sf_expint_3_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the exponential integral @math{Ei_3(x) = \int_0^xdt \exp(-t^3)} for @c{$x \ge 0$}@math{x >= 0}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Trigonometric Integrals@subsection Trigonometric Integrals@deftypefun double gsl_sf_Si (const double @var{x})@deftypefunx int gsl_sf_Si_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the Sine integral@math{Si(x) = \int_0^x dt \sin(t)/t}.@comment Exceptional Return Values: none@end deftypefun @deftypefun double gsl_sf_Ci (const double @var{x})@deftypefunx int gsl_sf_Ci_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the Cosine integral @math{Ci(x) = -\int_x^\infty dt\cos(t)/t} for @math{x > 0}.  @comment Domain: x > 0.0@comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Arctangent Integral@subsection Arctangent Integral@deftypefun double gsl_sf_atanint (double @var{x})@deftypefunx int gsl_sf_atanint_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the Arctangent integral @math{AtanInt(x) =\int_0^x dt \arctan(t)/t}.@comment Domain: @comment Exceptional Return Values: @end deftypefun

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -