📄 specfunc-legendre.texi
字号:
@cindex Legendre functions@cindex spherical harmonics@cindex conical functions@cindex hyperbolic spaceThe Legendre Functions and Legendre Polynomials are described inAbramowitz & Stegun, Chapter 8. These functions are declared in the header file @file{gsl_sf_legendre.h}.@menu* Legendre Polynomials:: * Associated Legendre Polynomials and Spherical Harmonics:: * Conical Functions:: * Radial Functions for Hyperbolic Space:: @end menu@node Legendre Polynomials@subsection Legendre Polynomials@deftypefun double gsl_sf_legendre_P1 (double @var{x})@deftypefunx double gsl_sf_legendre_P2 (double @var{x})@deftypefunx double gsl_sf_legendre_P3 (double @var{x})@deftypefunx int gsl_sf_legendre_P1_e (double @var{x}, gsl_sf_result * @var{result})@deftypefunx int gsl_sf_legendre_P2_e (double @var{x}, gsl_sf_result * @var{result})@deftypefunx int gsl_sf_legendre_P3_e (double @var{x}, gsl_sf_result * @var{result})These functions evaluate the Legendre polynomials@c{$P_l(x)$} @math{P_l(x)} using explicitrepresentations for @math{l=1, 2, 3}.@comment Exceptional Return Values: none@end deftypefun@deftypefun double gsl_sf_legendre_Pl (int @var{l}, double @var{x})@deftypefunx int gsl_sf_legendre_Pl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})These functions evaluate the Legendre polynomial @c{$P_l(x)$} @math{P_l(x)} for a specific value of @var{l},@var{x} subject to @c{$l \ge 0$}@math{l >= 0}, @c{$|x| \le 1$}@math{|x| <= 1}@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun int gsl_sf_legendre_Pl_array (int @var{lmax}, double @var{x}, double @var{result_array}[])This function computes an array of Legendre polynomials@math{P_l(x)} for @math{l = 0, \dots, lmax}, @c{$|x| \le 1$}@math{|x| <= 1}@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_legendre_Q0 (double @var{x})@deftypefunx int gsl_sf_legendre_Q0_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the Legendre function @math{Q_0(x)} for @math{x >-1}, @c{$x \ne 1$}@math{x != 1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_legendre_Q1 (double @var{x})@deftypefunx int gsl_sf_legendre_Q1_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the Legendre function @math{Q_1(x)} for @math{x >-1}, @c{$x \ne 1$}@math{x != 1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_legendre_Ql (int @var{l}, double @var{x})@deftypefunx int gsl_sf_legendre_Ql_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})These routines compute the Legendre function @math{Q_l(x)} for @math{x >-1}, @c{$x \ne 1$}@math{x != 1} and @c{$l \ge 0$}@math{l >= 0}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Associated Legendre Polynomials and Spherical Harmonics@subsection Associated Legendre Polynomials and Spherical HarmonicsThe following functions compute the associated Legendre Polynomials@math{P_l^m(x)}. Note that this function grows combinatorially with@math{l} and can overflow for @math{l} larger than about 150. There isno trouble for small @math{m}, but overflow occurs when @math{m} and@math{l} are both large. Rather than allow overflows, these functionsrefuse to calculate @math{P_l^m(x)} and return @code{GSL_EOVRFLW} whenthey can sense that @math{l} and @math{m} are too big.If you want to calculate a spherical harmonic, then @emph{do not} usethese functions. Instead use @code{gsl_sf_legendre_sphPlm()} below,which uses a similar recursion, but with the normalized functions.@deftypefun double gsl_sf_legendre_Plm (int @var{l}, int @var{m}, double @var{x})@deftypefunx int gsl_sf_legendre_Plm_e (int @var{l}, int @var{m}, double @var{x}, gsl_sf_result * @var{result})These routines compute the associated Legendre polynomial@math{P_l^m(x)} for @c{$m \ge 0$}@math{m >= 0}, @c{$l \ge m$}@math{l >= m}, @c{$|x| \le 1$}@math{|x| <= 1}. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun int gsl_sf_legendre_Plm_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[])This function computes an array of Legendre polynomials@math{P_l^m(x)} for @c{$m \ge 0$}@math{m >= 0}, @c{$l = |m|, \dots, lmax$}@math{l = |m|, ..., lmax}, @c{$|x| \le 1$}@math{|x| <= 1}.@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_legendre_sphPlm (int @var{l}, int @var{m}, double @var{x})@deftypefunx int gsl_sf_legendre_sphPlm_e (int @var{l}, int @var{m}, double @var{x}, gsl_sf_result * @var{result})These routines compute the normalized associated Legendre polynomial@c{$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$}@math{$\sqrt@{(2l+1)/(4\pi)@} \sqrt@{(l-m)!/(l+m)!@} P_l^m(x)$} suitablefor use in spherical harmonics. The parameters must satisfy @c{$m \ge 0$}@math{m >= 0}, @c{$l \ge m$}@math{l >= m}, @c{$|x| \le 1$}@math{|x| <= 1}. Theses routines avoid the overflowsthat occur for the standard normalization of @math{P_l^m(x)}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun int gsl_sf_legendre_sphPlm_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[])This function computes an array of normalized associated Legendre functions@c{$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$}@math{$\sqrt@{(2l+1)/(4\pi)@} \sqrt@{(l-m)!/(l+m)!@} P_l^m(x)$}for @c{$m \ge 0$}@math{m >= 0}, @c{$l = |m|, \dots, lmax$}@math{l = |m|, ..., lmax}, @c{$|x| \le 1$}@math{|x| <= 1.0}@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun int gsl_sf_legendre_array_size (const int @var{lmax}, const int @var{m})This functions returns the size of @var{result_array}[] needed for the arrayversions of @math{P_l^m(x)}, @var{lmax} - @var{m} + 1.@comment Exceptional Return Values: none@end deftypefun@node Conical Functions@subsection Conical FunctionsThe Conical Functions @c{$P^\mu_{-(1/2)+i\lambda}(x)$}@math{P^\mu_@{-(1/2)+i\lambda@}(x)}, @c{$Q^\mu_{-(1/2)+i\lambda}$} @math{Q^\mu_@{-(1/2)+i\lambda@}} are described in Abramowitz & Stegun, Section 8.12.@deftypefun double gsl_sf_conicalP_half (double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_conicalP_half_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular Spherical Conical Function@c{$P^{1/2}_{-1/2 + i \lambda}(x)$}@math{P^@{1/2@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_conicalP_mhalf (double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_conicalP_mhalf_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These routines compute the regular Spherical Conical Function@c{$P^{-1/2}_{-1/2 + i \lambda}(x)$}@math{P^@{-1/2@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_conicalP_0 (double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_conicalP_0_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These routines compute the conical function@c{$P^0_{-1/2 + i \lambda}(x)$}@math{P^0_@{-1/2 + i \lambda@}(x)}for @math{x > -1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_conicalP_1 (double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_conicalP_1_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These routines compute the conical function @c{$P^1_{-1/2 + i \lambda}(x)$}@math{P^1_@{-1/2 + i \lambda@}(x)} for @math{x > -1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_conicalP_sph_reg (int @var{l}, double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_conicalP_sph_reg_e (int @var{l}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These routines compute the Regular Spherical Conical Function@c{$P^{-1/2-l}_{-1/2 + i \lambda}(x)$}@math{P^@{-1/2-l@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}, @c{$l \ge -1$}@math{l >= -1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_conicalP_cyl_reg (int @var{m}, double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_conicalP_cyl_reg_e (int @var{m}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These routines compute the Regular Cylindrical Conical Function@c{$P^{-m}_{-1/2 + i \lambda}(x)$}@math{P^@{-m@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}, @c{$m \ge -1$}@math{m >= -1}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Radial Functions for Hyperbolic Space@subsection Radial Functions for Hyperbolic SpaceThe following spherical functions are specializations of Legendrefunctions which give the regular eigenfunctions of the Laplacian on a3-dimensional hyperbolic space @math{H3d}. Of particular interest isthe flat limit, @math{\lambda \to \infty}, @math{\eta \to 0},@math{\lambda\eta} fixed. @deftypefun double gsl_sf_legendre_H3d_0 (double @var{lambda}, double @var{eta})@deftypefunx int gsl_sf_legendre_H3d_0_e (double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result})These routines compute the zeroth radial eigenfunction of the Laplacian on the3-dimensional hyperbolic space,@c{$L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))$}@math{L^@{H3d@}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))}for @c{$\eta \ge 0$}@math{\eta >= 0}.In the flat limit this takes the form@c{$L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta)$}@math{L^@{H3d@}_0(\lambda,\eta) = j_0(\lambda\eta)}@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_legendre_H3d_1 (double @var{lambda}, double @var{eta})@deftypefunx int gsl_sf_legendre_H3d_1_e (double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result})These routines compute the first radial eigenfunction of the Laplacian onthe 3-dimensional hyperbolic space,@c{$L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))$}@math{L^@{H3d@}_1(\lambda,\eta) := 1/\sqrt@{\lambda^2 + 1@} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))}for @c{$\eta \ge 0$}@math{\eta >= 0}.In the flat limit this takes the form @c{$L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta)$}@math{L^@{H3d@}_1(\lambda,\eta) = j_1(\lambda\eta)}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_legendre_H3d (int @var{l}, double @var{lambda}, double @var{eta})@deftypefunx int gsl_sf_legendre_H3d_e (int @var{l}, double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result})These routines compute the @var{l}'th radial eigenfunction of theLaplacian on the 3-dimensional hyperbolic space @c{$\eta \ge 0$}@math{\eta >= 0}, @c{$l \ge 0$}@math{l >= 0}. In the flat limit this takes the form@c{$L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta)$}@math{L^@{H3d@}_l(\lambda,\eta) = j_l(\lambda\eta)}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun int gsl_sf_legendre_H3d_array (int @var{lmax}, double @var{lambda}, double @var{eta}, double @var{result_array}[])This function computes an array of radial eigenfunctions@c{$L^{H3d}_l( \lambda, \eta)$} @math{L^@{H3d@}_l(\lambda, \eta)} for @c{$0 \le l \le lmax$}@math{0 <= l <= lmax}.@comment Exceptional Return Values:@end deftypefun
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -