📄 specfunc-gegenbauer.texi
字号:
@cindex Gegenbauer functionsThe Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter22, where they are known as Ultraspherical polynomials. The functionsdescribed in this section are declared in the header file@file{gsl_sf_gegenbauer.h}.@deftypefun double gsl_sf_gegenpoly_1 (double @var{lambda}, double @var{x})@deftypefunx double gsl_sf_gegenpoly_2 (double @var{lambda}, double @var{x})@deftypefunx double gsl_sf_gegenpoly_3 (double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_gegenpoly_1_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})@deftypefunx int gsl_sf_gegenpoly_2_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})@deftypefunx int gsl_sf_gegenpoly_3_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These functions evaluate the Gegenbauer polynomials@c{$C^{(\lambda)}_n(x)$} @math{C^@{(\lambda)@}_n(x)} using explicitrepresentations for @math{n =1, 2, 3}.@comment Exceptional Return Values: none@end deftypefun@deftypefun double gsl_sf_gegenpoly_n (int @var{n}, double @var{lambda}, double @var{x})@deftypefunx int gsl_sf_gegenpoly_n_e (int @var{n}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})These functions evaluate the Gegenbauer polynomial @c{$C^{(\lambda)}_n(x)$} @math{C^@{(\lambda)@}_n(x)} for a specific value of @var{n},@var{lambda}, @var{x} subject to @math{\lambda > -1/2}, @c{$n \ge 0$}@math{n >= 0}.@comment Domain: lambda > -1/2, n >= 0@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun int gsl_sf_gegenpoly_array (int @var{nmax}, double @var{lambda}, double @var{x}, double @var{result_array}[])This function computes an array of Gegenbauer polynomials@c{$C^{(\lambda)}_n(x)$} @math{C^@{(\lambda)@}_n(x)} for @math{n = 0, 1, 2, \dots, nmax}, subjectto @math{\lambda > -1/2}, @c{$nmax \ge 0$}@math{nmax >= 0}.@comment Conditions: n = 0, 1, 2, ... nmax@comment Domain: lambda > -1/2, nmax >= 0@comment Exceptional Return Values: GSL_EDOM@end deftypefun
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -