⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 binomial.c

📁 开放gsl矩阵运算
💻 C
字号:
/* randist/binomial.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>#include <gsl/gsl_sf_gamma.h>/* The binomial distribution has the form,   prob(k) =  n!/(k!(n-k)!) *  p^k (1-p)^(n-k) for k = 0, 1, ..., n   This is the algorithm from Knuth */unsigned intgsl_ran_binomial (const gsl_rng * r, double p, unsigned int n){  unsigned int i, a, b, k = 0;  while (n > 10)	/* This parameter is tunable */    {      double X;      a = 1 + (n / 2);      b = 1 + n - a;      X = gsl_ran_beta (r, (double) a, (double) b);      if (X >= p)	{	  n = a - 1;	  p /= X;	}      else	{	  k += a;	  n = b - 1;	  p = (p - X) / (1 - X);	}    }  for (i = 0; i < n; i++)    {      double u = gsl_rng_uniform (r);      if (u < p)	k++;    }  return k;}doublegsl_ran_binomial_pdf (const unsigned int k, const double p, 		      const unsigned int n){  if (k > n)    {      return 0 ;    }  else     {      double a = k;      double b = n - k;      double P;      double Cnk = gsl_sf_choose (n, k) ;      P = Cnk * pow (p, a) * pow (1 - p, b);            return P;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -