⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 antifourstepchaos.m

📁 该程序是切换控制法实现四阶稳定线性系统的混沌反控制的一个范例。对初学者有用!
💻 M
字号:
clear all;
close all;
x(1,:)=[3 0.5 8 7];
h=0.05;
for n=1:10000
    if sqrt(x(n,1)^2+x(n,2)^2+x(n,3)^2+x(n,4)^2)<=8
        a=-6;%不稳定的线性系统,系统Jacobian矩阵的特征值为:-3,-2,1,1)
        b=7;
        c=3;
        d=-3;
        
    K1=x(n,2);
    L1=x(n,3);
    M1=x(n,4);
    N1=a*x(n,1)+b*x(n,2)+c*x(n,3)+d*x(n,4);
    
    K2=x(n,2)+h*L1/2;
    L2=x(n,3)+h*M1/2;
    M2=x(n,4)+h*N1/2;
    N2=a*(x(n,1)+h*K1/2)+b*(x(n,2)+h*L1/2)+c*(x(n,3)+h*M1/2)+d*(x(n,4)+h*N1/2);
    
    K3=x(n,2)+h*L2/2;
    L3=x(n,3)+h*M2/2;
    M3=x(n,4)+h*N2/2;
    N3=a*(x(n,1)+h*K2/2)+b*(x(n,2)+h*L2/2)+c*(x(n,3)+h*M2/2)+d*(x(n,4)+h*N2/2);
    
    K4=x(n,2)+h*L3;
    L4=x(n,3)+h*M3;
    M4=x(n,4)+h*N3;
    N4=a*(x(n,1)+h*K3)+b*(x(n,2)+h*L3)+c*(x(n,3)+h*M3)+d*(x(n,4)+h*N3);
    
          x(n+1,:)=x(n,:)+[h*(K1+2*K2+2*K3+K4)/6 h*(L1+2*L2+2*L3+L4)/6 h*(M1+2*M2+2*M3+M4)/6 h*(N1+2*N2+2*N3+N4)/6];
    else
        a=-6;    %稳定的线性系统,系统Jacobian矩阵的特征值为:-3,-2,-1,-1)
        b=-17;
        c=-17;
        d=-3;
        
    K1=x(n,2);
    L1=x(n,3);
    M1=x(n,4);
    N1=a*x(n,1)+b*x(n,2)+c*x(n,3)+d*x(n,4);
    
    K2=x(n,2)+h*L1/2;
    L2=x(n,3)+h*M1/2;
    M2=x(n,4)+h*N1/2;
    N2=a*(x(n,1)+h*K1/2)+b*(x(n,2)+h*L1/2)+c*(x(n,3)+h*M1/2)+d*(x(n,4)+h*N1/2);
    
    K3=x(n,2)+h*L2/2;
    L3=x(n,3)+h*M2/2;
    M3=x(n,4)+h*N2/2;
    N3=a*(x(n,1)+h*K2/2)+b*(x(n,2)+h*L2/2)+c*(x(n,3)+h*M2/2)+d*(x(n,4)+h*N2/2);
    
    K4=x(n,2)+h*L3;
    L4=x(n,3)+h*M3;
    M4=x(n,4)+h*N3;
    N4=a*(x(n,1)+h*K3)+b*(x(n,2)+h*L3)+c*(x(n,3)+h*M3)+d*(x(n,4)+h*N3);
    
      x(n+1,:)=x(n,:)+[h*(K1+2*K2+2*K3+K4)/6 h*(L1+2*L2+2*L3+L4)/6 h*(M1+2*M2+2*M3+M4)/6 h*(N1+2*N2+2*N3+N4)/6];
  end
  if n>=1000
      y(n,:)=x(n,:);
  end
  n
end
plot3(y(:,1),y(:,2),y(:,3),'k') ;%系统的四个Lyapunov指数为:1.8074,0.0507,-0.8796,-3.5796.  
xlabel('x1');
ylabel('x2');
zlabel('x3');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -