⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rs码.cpp

📁 主要功能是完成RS码的编码和解码过程,效率非常高
💻 CPP
字号:
#include <math.h>
#include <stdio.h>
#define mm  4           /* RS code over GF(2**4) - change to suit */
#define nn  15          /* nn=2**mm -1   length of codeword */
#define tt  3           /* number of errors that can be corrected */
#define kk  9           /* kk = nn-2*tt  */

int pp [mm+1] = { 1, 1, 0, 0, 1} ; /* specify irreducible polynomial coeffts */
int alpha_to [nn+1], index_of [nn+1], gg [nn-kk+1] ;
int recd [nn], data [kk], bb [nn-kk] ;


void generate_gf()
/* generate GF(2**mm) from the irreducible polynomial p(X) in pp[0]..pp[mm]
   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
                   polynomial form -> index form  index_of[j=alpha**i] = i
   alpha=2 is the primitive element of GF(2**mm)
*/
 {
   register int i, mask ;

  mask = 1 ;
  alpha_to[mm] = 0 ;
  for (i=0; i<mm; i++)
   { alpha_to[i] = mask ;
     index_of[alpha_to[i]] = i ;
     if (pp[i]!=0)
       alpha_to[mm] ^= mask ;
     mask <<= 1 ;
   }
  index_of[alpha_to[mm]] = mm ;
  mask >>= 1 ;
  for (i=mm+1; i<nn; i++)
   { if (alpha_to[i-1] >= mask)
        alpha_to[i] = alpha_to[mm] ^ ((alpha_to[i-1]^mask)<<1) ;
     else alpha_to[i] = alpha_to[i-1]<<1 ;
     index_of[alpha_to[i]] = i ;
   }
  index_of[0] = -1 ;
 }


void gen_poly()
/* Obtain the generator polynomial of the tt-error correcting, length
  nn=(2**mm -1) Reed Solomon code  from the product of (X+alpha**i), i=1..2*tt
*/
 {
   register int i,j ;

   gg[0] = 2 ;    /* primitive element alpha = 2  for GF(2**mm)  */
   gg[1] = 1 ;    /* g(x) = (X+alpha) initially */
   for (i=2; i<=nn-kk; i++)
    { gg[i] = 1 ;
      for (j=i-1; j>0; j--)
        if (gg[j] != 0)  gg[j] = gg[j-1]^ alpha_to[(index_of[gg[j]]+i)%nn] ;
        else gg[j] = gg[j-1] ;
      gg[0] = alpha_to[(index_of[gg[0]]+i)%nn] ;     /* gg[0] can never be zero */
    }
   /* convert gg[] to index form for quicker encoding */
   for (i=0; i<=nn-kk; i++)  gg[i] = index_of[gg[i]] ;
 }


void encode_rs()
/* take the string of symbols in data[i], i=0..(k-1) and encode systematically
   to produce 2*tt parity symbols in bb[0]..bb[2*tt-1]
   data[] is input and bb[] is output in polynomial form.
   Encoding is done by using a feedback shift register with appropriate
   connections specified by the elements of gg[], which was generated above.
   Codeword is   c(X) = data(X)*X**(nn-kk)+ b(X)          */
 {
   register int i,j ;
   int feedback ;

   for (i=0; i<nn-kk; i++)   bb[i] = 0 ;
   for (i=kk-1; i>=0; i--)
    {  feedback = index_of[data[i]^bb[nn-kk-1]] ;
       if (feedback != -1)
        { for (j=nn-kk-1; j>0; j--)
            if (gg[j] != -1)
              bb[j] = bb[j-1]^alpha_to[(gg[j]+feedback)%nn] ;
            else
              bb[j] = bb[j-1] ;
          bb[0] = alpha_to[(gg[0]+feedback)%nn] ;
        }
       else
        { for (j=nn-kk-1; j>0; j--)
            bb[j] = bb[j-1] ;
          bb[0] = 0 ;
        } ;
    } ;
 } ;



void decode_rs()
/* assume we have received bits grouped into mm-bit symbols in recd[i],
   i=0..(nn-1),  and recd[i] is index form (ie as powers of alpha).
   We first compute the 2*tt syndromes by substituting alpha**i into rec(X) and
   evaluating, storing the syndromes in s[i], i=1..2tt (leave s[0] zero) .
   Then we use the Berlekamp iteration to find the error location polynomial
   elp[i].   If the degree of the elp is >tt, we cannot correct all the errors
   and hence just put out the information symbols uncorrected. If the degree of
   elp is <=tt, we substitute alpha**i , i=1..n into the elp to get the roots,
   hence the inverse roots, the error location numbers. If the number of errors
   located does not equal the degree of the elp, we have more than tt errors
   and cannot correct them.  Otherwise, we then solve for the error value at
   the error location and correct the error.  The procedure is that found in
   Lin and Costello. For the cases where the number of errors is known to be too
   large to correct, the information symbols as received are output (the
   advantage of systematic encoding is that hopefully some of the information
   symbols will be okay and that if we are in luck, the errors are in the
   parity part of the transmitted codeword).  Of course, these insoluble cases
   can be returned as error flags to the calling routine if desired.   */
 {
   register int i,j,u,q ;
   int elp[nn-kk+2][nn-kk], d[nn-kk+2], l[nn-kk+2], u_lu[nn-kk+2], s[nn-kk+1] ;
   int count=0, syn_error=0, root[tt], loc[tt], z[tt+1], err[nn], reg[tt+1] ;

/* first form the syndromes */
   for (i=1; i<=nn-kk; i++)
    { s[i] = 0 ;
      for (j=0; j<nn; j++)
        if (recd[j]!=-1)
          s[i] ^= alpha_to[(recd[j]+i*j)%nn] ;      /* recd[j] in index form */
/* convert syndrome from polynomial form to index form  */
      if (s[i]!=0)  syn_error=1 ;        /* set flag if non-zero syndrome => error */
      s[i] = index_of[s[i]] ;
    } ;

   if (syn_error)       /* if errors, try and correct */
    {
/* compute the error location polynomial via the Berlekamp iterative algorithm,
   following the terminology of Lin and Costello :   d[u] is the 'mu'th
   discrepancy, where u='mu'+1 and 'mu' (the Greek letter!) is the step number
   ranging from -1 to 2*tt (see L&C),  l[u] is the
   degree of the elp at that step, and u_l[u] is the difference between the
   step number and the degree of the elp.
*/
/* initialise table entries */
      d[0] = 0 ;           /* index form */
      d[1] = s[1] ;        /* index form */
      elp[0][0] = 0 ;      /* index form */
      elp[1][0] = 1 ;      /* polynomial form */
      for (i=1; i<nn-kk; i++)
        { 
		  elp[0][i] = -1 ;   /* index form */
          elp[1][i] = 0 ;   /* polynomial form */
        }
      l[0] = 0 ;
      l[1] = 0 ;
      u_lu[0] = -1 ;
      u_lu[1] = 0 ;
      u = 0 ;

      do
      {
        u++ ;
        if (d[u]==-1)
          { l[u+1] = l[u] ;
            for (i=0; i<=l[u]; i++)
             {  elp[u+1][i] = elp[u][i] ;
                elp[u][i] = index_of[elp[u][i]] ;
             }
          }
        else
/* search for words with greatest u_lu[q] for which d[q]!=0 */
          { q = u-1 ;
            while ((d[q]==-1) && (q>0)) q-- ;
/* have found first non-zero d[q]  */
            if (q>0)
             { j=q ;
               do
               { j-- ;
                 if ((d[j]!=-1) && (u_lu[q]<u_lu[j]))
                   q = j ;
               }while (j>0) ;
             } ;

/* have now found q such that d[u]!=0 and u_lu[q] is maximum */
/* store degree of new elp polynomial */
            if (l[u]>l[q]+u-q)  l[u+1] = l[u] ;
            else  l[u+1] = l[q]+u-q ;

/* form new elp(x) */
            for (i=0; i<nn-kk; i++)    elp[u+1][i] = 0 ;
            for (i=0; i<=l[q]; i++)
              if (elp[q][i]!=-1)
                elp[u+1][i+u-q] = alpha_to[(d[u]+nn-d[q]+elp[q][i])%nn] ;
            for (i=0; i<=l[u]; i++)
              { elp[u+1][i] ^= elp[u][i] ;
                elp[u][i] = index_of[elp[u][i]] ;  /*convert old elp value to index*/
              }
          }
        u_lu[u+1] = u-l[u+1] ;

/* form (u+1)th discrepancy */
        if (u<nn-kk)    /* no discrepancy computed on last iteration */
          {
            if (s[u+1]!=-1)
                   d[u+1] = alpha_to[s[u+1]] ;
            else
              d[u+1] = 0 ;
            for (i=1; i<=l[u+1]; i++)
              if ((s[u+1-i]!=-1) && (elp[u+1][i]!=0))
                d[u+1] ^= alpha_to[(s[u+1-i]+index_of[elp[u+1][i]])%nn] ;
            d[u+1] = index_of[d[u+1]] ;    /* put d[u+1] into index form */
          }
      } while ((u<nn-kk) && (l[u+1]<=tt)) ;

      u++ ;
      if (l[u]<=tt)         /* can correct error */
       {
/* put elp into index form */
         for (i=0; i<=l[u]; i++)   elp[u][i] = index_of[elp[u][i]] ;

/* find roots of the error location polynomial */
         for (i=1; i<=l[u]; i++)
           reg[i] = elp[u][i] ;
         count = 0 ;
         for (i=1; i<=nn; i++)
          {  q = 1 ;
             for (j=1; j<=l[u]; j++)
              if (reg[j]!=-1)
                { reg[j] = (reg[j]+j)%nn ;
                  q ^= alpha_to[reg[j]] ;
                } ;
             if (!q)        /* store root and error location number indices */
              { root[count] = i;
                loc[count] = nn-i ;
                count++ ;
              };
          } ;
         if (count==l[u])    /* no. roots = degree of elp hence <= tt errors */
          {
/* form polynomial z(x) */
           for (i=1; i<=l[u]; i++)        /* Z[0] = 1 always - do not need */
            { if ((s[i]!=-1) && (elp[u][i]!=-1))
                 z[i] = alpha_to[s[i]] ^ alpha_to[elp[u][i]] ;
              else if ((s[i]!=-1) && (elp[u][i]==-1))
                      z[i] = alpha_to[s[i]] ;
                   else if ((s[i]==-1) && (elp[u][i]!=-1))
                          z[i] = alpha_to[elp[u][i]] ;
                        else
                          z[i] = 0 ;
              for (j=1; j<i; j++)
                if ((s[j]!=-1) && (elp[u][i-j]!=-1))
                   z[i] ^= alpha_to[(elp[u][i-j] + s[j])%nn] ;
              z[i] = index_of[z[i]] ;         /* put into index form */
            } ;

  /* evaluate errors at locations given by error location numbers loc[i] */
           for (i=0; i<nn; i++)
             { err[i] = 0 ;
               if (recd[i]!=-1)        /* convert recd[] to polynomial form */
                 recd[i] = alpha_to[recd[i]] ;
               else  recd[i] = 0 ;
             }
           for (i=0; i<l[u]; i++)    /* compute numerator of error term first */
            { err[loc[i]] = 1;       /* accounts for z[0] */
              for (j=1; j<=l[u]; j++)
                if (z[j]!=-1)
                  err[loc[i]] ^= alpha_to[(z[j]+j*root[i])%nn] ;
              if (err[loc[i]]!=0)
               { err[loc[i]] = index_of[err[loc[i]]] ;
                 q = 0 ;     /* form denominator of error term */
                 for (j=0; j<l[u]; j++)
                   if (j!=i)
                     q += index_of[1^alpha_to[(loc[j]+root[i])%nn]] ;
                 q = q % nn ;
                 err[loc[i]] = alpha_to[(err[loc[i]]-q+nn)%nn] ;
                 recd[loc[i]] ^= err[loc[i]] ;  /*recd[i] must be in polynomial form */
               }
            }
          }
         else    /* no. roots != degree of elp => >tt errors and cannot solve */
           for (i=0; i<nn; i++)        /* could return error flag if desired */
               if (recd[i]!=-1)        /* convert recd[] to polynomial form */
                 recd[i] = alpha_to[recd[i]] ;
               else  recd[i] = 0 ;     /* just output received codeword as is */
       }
     else         /* elp has degree has degree >tt hence cannot solve */
       for (i=0; i<nn; i++)       /* could return error flag if desired */
          if (recd[i]!=-1)        /* convert recd[] to polynomial form */
            recd[i] = alpha_to[recd[i]] ;
          else  recd[i] = 0 ;     /* just output received codeword as is */
    }
   else       /* no non-zero syndromes => no errors: output received codeword */
    for (i=0; i<nn; i++)
       if (recd[i]!=-1)        /* convert recd[] to polynomial form */
         recd[i] = alpha_to[recd[i]] ;
       else  recd[i] = 0 ;
 }



main()
{
  register int i;

/* generate the Galois Field GF(2**mm) */
  generate_gf() ;
  printf("Look-up tables for GF(2**%2d)\n",mm) ;
  printf("  i   alpha_to[i]  index_of[i]\n") ;
  for (i=0; i<=nn; i++)
   printf("%3d      %3d          %3d\n",i,alpha_to[i],index_of[i]) ;
  printf("\n\n") ;

/* compute the generator polynomial for this RS code */
  gen_poly() ;


/* for known data, stick a few numbers into a zero codeword. Data is in
   polynomial form.
*/
for  (i=0; i<kk; i++)   data[i] = 0 ;

/* for example, say we transmit the following message (nothing special!) */
data[0] = 8 ;
data[1] = 6 ;
data[2] = 8 ;
data[3] = 1 ;
data[4] = 2 ;
data[5] = 4 ;
data[6] = 15 ;
data[7] = 9 ;
data[8] = 9 ;

/* encode data[] to produce parity in bb[].  Data input and parity output
   is in polynomial form
*/
  encode_rs() ;

/* put the transmitted codeword, made up of data plus parity, in recd[] */
  for (i=0; i<nn-kk; i++)  recd[i] = bb[i] ;
  for (i=0; i<kk; i++) recd[i+nn-kk] = data[i] ;

/* if you want to test the program, corrupt some of the elements of recd[]
   here. This can also be done easily in a debugger. */
/* Again, lets say that a middle element is changed */
  data[nn-nn/2] = 3 ;


  for (i=0; i<nn; i++)
     recd[i] = index_of[recd[i]] ;          /* put recd[i] into index form */

/* decode recv[] */
  decode_rs() ;         /* recd[] is returned in polynomial form */

/* print out the relevant stuff - initial and decoded {parity and message} */
  printf("Results for Reed-Solomon code (n=%3d, k=%3d, t= %3d)\n\n",nn,kk,tt) ;
  printf("  i  data[i]   recd[i](decoded)   (data, recd in polynomial form)\n");
  for (i=0; i<nn-kk; i++)
    printf("%3d    %3d      %3d\n",i, bb[i], recd[i]) ;
  for (i=nn-kk; i<nn; i++)
    printf("%3d    %3d      %3d\n",i, data[i-nn+kk], recd[i]) ;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -