⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 safer.c

📁 最新版本的加密解密算法库
💻 C
字号:
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org *//********************************************************************************* FILE:           safer.c** DESCRIPTION:    block-cipher algorithm SAFER (Secure And Fast Encryption*                 Routine) in its four versions: SAFER K-64, SAFER K-128,*                 SAFER SK-64 and SAFER SK-128.** AUTHOR:         Richard De Moliner (demoliner@isi.ee.ethz.ch)*                 Signal and Information Processing Laboratory*                 Swiss Federal Institute of Technology*                 CH-8092 Zuerich, Switzerland** DATE:           September 9, 1995** CHANGE HISTORY:********************************************************************************/#include <mycrypt.h>#ifdef SAFERconst struct _cipher_descriptor    safer_k64_desc = {   "safer-k64",    8, 8, 8, 8, SAFER_K64_DEFAULT_NOF_ROUNDS,   &safer_k64_setup,   &safer_ecb_encrypt,   &safer_ecb_decrypt,   &safer_k64_test,   &safer_64_keysize   },   safer_sk64_desc = {   "safer-sk64",   9, 8, 8, 8, SAFER_SK64_DEFAULT_NOF_ROUNDS,   &safer_sk64_setup,   &safer_ecb_encrypt,   &safer_ecb_decrypt,   &safer_sk64_test,   &safer_64_keysize   },   safer_k128_desc = {   "safer-k128",   10, 16, 16, 8, SAFER_K128_DEFAULT_NOF_ROUNDS,   &safer_k128_setup,   &safer_ecb_encrypt,   &safer_ecb_decrypt,   &safer_sk128_test,   &safer_128_keysize   },   safer_sk128_desc = {   "safer-sk128",   11, 16, 16, 8, SAFER_SK128_DEFAULT_NOF_ROUNDS,   &safer_sk128_setup,   &safer_ecb_encrypt,   &safer_ecb_decrypt,   &safer_sk128_test,   &safer_128_keysize   };/******************* Constants ************************************************/// #define TAB_LEN      256/******************* Assertions ***********************************************//******************* Macros ***************************************************/#define ROL8(x, n)   ((unsigned char)((unsigned int)(x) << (n)\                                     |(unsigned int)((x) & 0xFF) >> (8 - (n))))#define EXP(x)       safer_ebox[(x) & 0xFF]#define LOG(x)       safer_lbox[(x) & 0xFF]#define PHT(x, y)    { y += x; x += y; }#define IPHT(x, y)   { x -= y; y -= x; }/******************* Types ****************************************************/extern const unsigned char safer_ebox[], safer_lbox[];#ifdef CLEAN_STACKstatic void _Safer_Expand_Userkey(const unsigned char *userkey_1,                                 const unsigned char *userkey_2,                                 unsigned int nof_rounds,                                 int strengthened,                                 safer_key_t key)#elsestatic void Safer_Expand_Userkey(const unsigned char *userkey_1,                                 const unsigned char *userkey_2,                                 unsigned int nof_rounds,                                 int strengthened,                                 safer_key_t key)#endif{   unsigned int i, j, k;    unsigned char ka[SAFER_BLOCK_LEN + 1];    unsigned char kb[SAFER_BLOCK_LEN + 1];    if (SAFER_MAX_NOF_ROUNDS < nof_rounds)        nof_rounds = SAFER_MAX_NOF_ROUNDS;    *key++ = (unsigned char)nof_rounds;    ka[SAFER_BLOCK_LEN] = (unsigned char)0;    kb[SAFER_BLOCK_LEN] = (unsigned char)0;    k = 0;    for (j = 0; j < SAFER_BLOCK_LEN; j++) {        ka[j] = ROL8(userkey_1[j], 5);        ka[SAFER_BLOCK_LEN] ^= ka[j];        kb[j] = *key++ = userkey_2[j];        kb[SAFER_BLOCK_LEN] ^= kb[j];    }    for (i = 1; i <= nof_rounds; i++) {        for (j = 0; j < SAFER_BLOCK_LEN + 1; j++) {            ka[j] = ROL8(ka[j], 6);            kb[j] = ROL8(kb[j], 6);        }        if (strengthened) {           k = 2 * i - 1;           while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }        }        for (j = 0; j < SAFER_BLOCK_LEN; j++) {            if (strengthened) {                *key++ = (ka[k]                                + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;                if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }            } else {                *key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;            }        }        if (strengthened) {           k = 2 * i;           while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }        }        for (j = 0; j < SAFER_BLOCK_LEN; j++) {            if (strengthened) {                *key++ = (kb[k]                                + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;                if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }            } else {                *key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;            }        }    }    #ifdef CLEAN_STACK    zeromem(ka, sizeof(ka));    zeromem(kb, sizeof(kb));#endif}#ifdef CLEAN_STACKstatic void Safer_Expand_Userkey(const unsigned char *userkey_1,                                 const unsigned char *userkey_2,                                 unsigned int nof_rounds,                                 int strengthened,                                 safer_key_t key){   _Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key);   burn_stack(sizeof(unsigned char) * (2 * (SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2);}#endifint safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey){   _ARGCHK(key != NULL);   _ARGCHK(skey != NULL);   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {      return CRYPT_INVALID_ROUNDS;   }   if (keylen != 8) {      return CRYPT_INVALID_KEYSIZE;   }   Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);   return CRYPT_OK;}   int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey){   _ARGCHK(key != NULL);   _ARGCHK(skey != NULL);   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {      return CRYPT_INVALID_ROUNDS;   }   if (keylen != 8) {      return CRYPT_INVALID_KEYSIZE;   }   Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);   return CRYPT_OK;}int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey){   _ARGCHK(key != NULL);   _ARGCHK(skey != NULL);   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {      return CRYPT_INVALID_ROUNDS;   }   if (keylen != 16) {      return CRYPT_INVALID_KEYSIZE;   }   Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);   return CRYPT_OK;}int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey){   _ARGCHK(key != NULL);   _ARGCHK(skey != NULL);   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {      return CRYPT_INVALID_ROUNDS;   }   if (keylen != 16) {      return CRYPT_INVALID_KEYSIZE;   }   Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);   return CRYPT_OK;}#ifdef CLEAN_STACKstatic void _safer_ecb_encrypt(const unsigned char *block_in,                             unsigned char *block_out,                             symmetric_key *skey)#elsevoid safer_ecb_encrypt(const unsigned char *block_in,                             unsigned char *block_out,                             symmetric_key *skey)#endif{   unsigned char a, b, c, d, e, f, g, h, t;    unsigned int round;    unsigned char *key;    _ARGCHK(block_in != NULL);    _ARGCHK(block_out != NULL);    _ARGCHK(skey != NULL);    key = skey->safer.key;    a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];    e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];    if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;    while(round-- > 0)    {        a ^= *++key; b += *++key; c += *++key; d ^= *++key;        e ^= *++key; f += *++key; g += *++key; h ^= *++key;        a = EXP(a) + *++key; b = LOG(b) ^ *++key;        c = LOG(c) ^ *++key; d = EXP(d) + *++key;        e = EXP(e) + *++key; f = LOG(f) ^ *++key;        g = LOG(g) ^ *++key; h = EXP(h) + *++key;        PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h);        PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h);        PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h);        t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t;    }    a ^= *++key; b += *++key; c += *++key; d ^= *++key;    e ^= *++key; f += *++key; g += *++key; h ^= *++key;    block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;    block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;    block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;    block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;}#ifdef CLEAN_STACKvoid safer_ecb_encrypt(const unsigned char *block_in,                             unsigned char *block_out,                             symmetric_key *skey){    _safer_ecb_encrypt(block_in, block_out, skey);    burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));}#endif#ifdef CLEAN_STACKstatic void _safer_ecb_decrypt(const unsigned char *block_in,                             unsigned char *block_out,                             symmetric_key *skey)#elsevoid safer_ecb_decrypt(const unsigned char *block_in,                             unsigned char *block_out,                             symmetric_key *skey)#endif{   unsigned char a, b, c, d, e, f, g, h, t;    unsigned int round;    unsigned char *key;    _ARGCHK(block_in != NULL);    _ARGCHK(block_out != NULL);    _ARGCHK(skey != NULL);    key = skey->safer.key;    a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];    e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];    if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;    key += SAFER_BLOCK_LEN * (1 + 2 * round);    h ^= *key; g -= *--key; f -= *--key; e ^= *--key;    d ^= *--key; c -= *--key; b -= *--key; a ^= *--key;    while (round--)    {        t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t;        IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h);        IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h);        IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h);        h -= *--key; g ^= *--key; f ^= *--key; e -= *--key;        d -= *--key; c ^= *--key; b ^= *--key; a -= *--key;        h = LOG(h) ^ *--key; g = EXP(g) - *--key;        f = EXP(f) - *--key; e = LOG(e) ^ *--key;        d = LOG(d) ^ *--key; c = EXP(c) - *--key;        b = EXP(b) - *--key; a = LOG(a) ^ *--key;    }    block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;    block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;    block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;    block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;}#ifdef CLEAN_STACKvoid safer_ecb_decrypt(const unsigned char *block_in,                             unsigned char *block_out,                             symmetric_key *skey){    _safer_ecb_decrypt(block_in, block_out, skey);    burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));}#endifint safer_64_keysize(int *keysize){   _ARGCHK(keysize != NULL);   if (*keysize < 8) {      return CRYPT_INVALID_KEYSIZE;   } else {      *keysize = 8;      return CRYPT_OK;   }}int safer_128_keysize(int *keysize){   _ARGCHK(keysize != NULL);   if (*keysize < 16) {      return CRYPT_INVALID_KEYSIZE;   } else {      *keysize = 16;      return CRYPT_OK;   }}int safer_k64_test(void){ #ifndef LTC_TEST    return CRYPT_NOP; #else       static const unsigned char k64_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },                              k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 },                              k64_ct[]  = { 200, 242, 156, 221, 135, 120, 62, 217 };   symmetric_key skey;   unsigned char buf[2][8];   int err;   /* test K64 */   if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) {      return err;   }   safer_ecb_encrypt(k64_pt, buf[0], &skey);   safer_ecb_decrypt(buf[0], buf[1], &skey);   if (memcmp(buf[0], k64_ct, 8) != 0 || memcmp(buf[1], k64_pt, 8) != 0) {      return CRYPT_FAIL_TESTVECTOR;   }   return CRYPT_OK; #endif}int safer_sk64_test(void){ #ifndef LTC_TEST    return CRYPT_NOP; #else       static const unsigned char sk64_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },                              sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 },                              sk64_ct[]  = { 95, 206, 155, 162, 5, 132, 56, 199 };   symmetric_key skey;   unsigned char buf[2][8];   int err, y;   /* test SK64 */   if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) {      return err;   }   safer_ecb_encrypt(sk64_pt, buf[0], &skey);   safer_ecb_decrypt(buf[0], buf[1], &skey);   if (memcmp(buf[0], sk64_ct, 8) != 0 || memcmp(buf[1], sk64_pt, 8) != 0) {      return CRYPT_FAIL_TESTVECTOR;   }      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */      for (y = 0; y < 8; y++) buf[0][y] = 0;      for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);      for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;   return CRYPT_OK;  #endif}int safer_sk128_test(void){ #ifndef LTC_TEST    return CRYPT_NOP; #else       static const unsigned char sk128_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },                              sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8,                                              0, 0, 0, 0, 0, 0, 0, 0 },                              sk128_ct[]  = { 255, 120, 17, 228, 179, 167, 46, 113 };   symmetric_key skey;   unsigned char buf[2][8];   int err, y;   /* test SK128 */   if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) {      return err;   }   safer_ecb_encrypt(sk128_pt, buf[0], &skey);   safer_ecb_decrypt(buf[0], buf[1], &skey);   if (memcmp(buf[0], sk128_ct, 8) != 0 || memcmp(buf[1], sk128_pt, 8) != 0) {      return CRYPT_FAIL_TESTVECTOR;   }      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */      for (y = 0; y < 8; y++) buf[0][y] = 0;      for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);      for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;  return CRYPT_OK; #endif}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -