⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nscomptr.h

📁 gaca源码
💻 H
📖 第 1 页 / 共 3 页
字号:
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: NPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Netscape Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/NPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is mozilla.org code.
 *
 * The Initial Developer of the Original Code is 
 * Netscape Communications Corporation.
 * Portions created by the Initial Developer are Copyright (C) 1998
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Scott Collins <scc@mozilla.org> (original author)
 *   L. David Baron <dbaron@dbaron.org>
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or 
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the NPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the NPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef nsCOMPtr_h___
#define nsCOMPtr_h___

/*
  Having problems?
  
  See the User Manual at:
    http://www.mozilla.org/projects/xpcom/nsCOMPtr.html


  nsCOMPtr
    better than a raw pointer
  for owning objects
                       -- scc
*/


  // Wrapping includes can speed up compiles (see "Large Scale C++ Software Design")
#ifndef nsDebug_h___
#include "nsDebug.h"
  // for |NS_PRECONDITION|
#endif

#ifndef nsISupportsUtils_h__
#include "nsISupportsUtils.h"
  // for |nsresult|, |NS_ADDREF|, |NS_GET_IID| et al
#endif

#ifndef nscore_h___
#include "nscore.h"
  // for |NS_..._CAST|, |NS_COM|
#endif


/*
  WARNING:
    This file defines several macros for internal use only.  These macros begin with the
    prefix |NSCAP_|.  Do not use these macros in your own code.  They are for internal use
    only for cross-platform compatibility, and are subject to change without notice.
*/


#ifdef _MSC_VER
  #define NSCAP_FEATURE_INLINE_STARTASSIGNMENT
    // under VC++, we win by inlining StartAssignment

    // Also under VC++, at the highest warning level, we are overwhelmed  with warnings
    //  about (unused) inline functions being removed.  This is to be expected with
    //  templates, so we disable the warning.
  #pragma warning( disable: 4514 )
#endif

#define NSCAP_FEATURE_USE_BASE

#ifdef NS_DEBUG
  #define NSCAP_FEATURE_TEST_DONTQUERY_CASES
  #undef NSCAP_FEATURE_USE_BASE
//#define NSCAP_FEATURE_TEST_NONNULL_QUERY_SUCCEEDS
#endif

  /*
    |...TEST_DONTQUERY_CASES| and |...DEBUG_PTR_TYPES| introduce some code that is 
    problematic on a select few of our platforms, e.g., QNX.  Therefore, I'm providing
    a mechanism by which these features can be explicitly disabled from the command-line.
  */

#ifdef NSCAP_DISABLE_TEST_DONTQUERY_CASES
  #undef NSCAP_FEATURE_TEST_DONTQUERY_CASES
#endif

#if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 3)
  // Our use of nsCOMPtr_base::mRawPtr violates the C++ standard's aliasing
  // rules. Mark it with the may_alias attribute so that gcc 3.3 and higher
  // don't reorder instructions based on aliasing assumptions for
  // this variable.  Fortunately, gcc versions < 3.3 do not do any
  // optimizations that break nsCOMPtr.

  #define NS_MAY_ALIAS_PTR(t)    t*  __attribute__((__may_alias__))
#else
  #define NS_MAY_ALIAS_PTR(t)    t*
#endif

#if defined(NSCAP_DISABLE_DEBUG_PTR_TYPES)
  #define NSCAP_FEATURE_USE_BASE
#endif


#ifdef HAVE_CPP_BOOL
  typedef bool NSCAP_BOOL;
#else
  typedef PRBool NSCAP_BOOL;
#endif




  /*
    The following three macros (|NSCAP_ADDREF|, |NSCAP_RELEASE|, and |NSCAP_LOG_ASSIGNMENT|)
      allow external clients the ability to add logging or other interesting debug facilities.
      In fact, if you want |nsCOMPtr| to participate in the standard logging facility, you
      provide (e.g., in "nsTraceRefcnt.h") suitable definitions

        #define NSCAP_ADDREF(this, ptr)         NS_ADDREF(ptr)
        #define NSCAP_RELEASE(this, ptr)        NS_RELEASE(ptr)
  */

#ifndef NSCAP_ADDREF
  #define NSCAP_ADDREF(this, ptr)     (ptr)->AddRef()
#endif

#ifndef NSCAP_RELEASE
  #define NSCAP_RELEASE(this, ptr)    (ptr)->Release()
#endif

  // Clients can define |NSCAP_LOG_ASSIGNMENT| to perform logging.
#ifdef NSCAP_LOG_ASSIGNMENT
    // Remember that |NSCAP_LOG_ASSIGNMENT| was defined by some client so that we know
    //  to instantiate |~nsGetterAddRefs| in turn to note the external assignment into
    //  the |nsCOMPtr|.
  #define NSCAP_LOG_EXTERNAL_ASSIGNMENT
#else
    // ...otherwise, just strip it out of the code
  #define NSCAP_LOG_ASSIGNMENT(this, ptr)
#endif

#ifndef NSCAP_LOG_RELEASE
  #define NSCAP_LOG_RELEASE(this, ptr)
#endif




  /*
    WARNING:
      VC++4.2 is very picky.  To compile under VC++4.2, the classes must be defined
      in an order that satisfies:
    
        nsDerivedSafe < nsCOMPtr
        already_AddRefed < nsCOMPtr
        nsCOMPtr < nsGetterAddRefs

      The other compilers probably won't complain, so please don't reorder these
      classes, on pain of breaking 4.2 compatibility.
  */


template <class T>
class nsDerivedSafe : public T
    /*
      No client should ever see or have to type the name of this class.  It is the
      artifact that makes it a compile-time error to call |AddRef| and |Release|
      on a |nsCOMPtr|.  DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE.

      See |nsCOMPtr::operator->|, |nsCOMPtr::operator*|, et al.

      This type should be a nested class inside |nsCOMPtr<T>|.
    */
  {
    private:
#ifdef HAVE_CPP_ACCESS_CHANGING_USING
      using T::AddRef;
      using T::Release;
#else
      nsrefcnt AddRef(void);
      nsrefcnt Release(void);
#endif

#if !defined(AIX) && !defined(IRIX)
      void operator delete( void*, size_t );                  // NOT TO BE IMPLEMENTED
        // declaring |operator delete| private makes calling delete on an interface pointer a compile error
#endif

      nsDerivedSafe<T>& operator=( const T& );                // NOT TO BE IMPLEMENTED
        // you may not call |operator=()| through a dereferenced |nsCOMPtr|, because you'd get the wrong one

        /*
          Compiler warnings and errors: nsDerivedSafe operator=() hides inherited operator=().
          If you see that, that means somebody checked in a [XP]COM interface class that declares an
          |operator=()|, and that's _bad_.  So bad, in fact, that this declaration exists explicitly
          to stop people from doing it.
        */

    protected:
      nsDerivedSafe();                                        // NOT TO BE IMPLEMENTED
        /*
          This ctor exists to avoid compile errors and warnings about nsDeriviedSafe using the
          default ctor but inheriting classes without an empty ctor. See bug 209667.
        */
  };

#if !defined(HAVE_CPP_ACCESS_CHANGING_USING) && defined(NEED_CPP_UNUSED_IMPLEMENTATIONS)
template <class T>
nsrefcnt
nsDerivedSafe<T>::AddRef()
  {
    return 0;
  }

template <class T>
nsrefcnt
nsDerivedSafe<T>::Release()
  {
    return 0;
  }

#endif



template <class T>
struct already_AddRefed
    /*
      ...cooperates with |nsCOMPtr| to allow you to assign in a pointer _without_
      |AddRef|ing it.  You might want to use this as a return type from a function
      that produces an already |AddRef|ed pointer as a result.

      See also |getter_AddRefs()|, |dont_AddRef()|, and |class nsGetterAddRefs|.

      This type should be a nested class inside |nsCOMPtr<T>|.

      Yes, |already_AddRefed| could have been implemented as an |nsCOMPtr_helper| to
      avoid adding specialized machinery to |nsCOMPtr| ... but this is the simplest
      case, and perhaps worth the savings in time and space that its specific
      implementation affords over the more general solution offered by
      |nsCOMPtr_helper|.
    */
  {
    already_AddRefed( T* aRawPtr )
        : mRawPtr(aRawPtr)
      {
        // nothing else to do here
      }

    T* get() const { return mRawPtr; }

    T* mRawPtr;
  };

template <class T>
inline
const already_AddRefed<T>
getter_AddRefs( T* aRawPtr )
    /*
      ...makes typing easier, because it deduces the template type, e.g., 
      you write |dont_AddRef(fooP)| instead of |already_AddRefed<IFoo>(fooP)|.
    */
  {
    return already_AddRefed<T>(aRawPtr);
  }

template <class T>
inline
const already_AddRefed<T>
getter_AddRefs( const already_AddRefed<T> aAlreadyAddRefedPtr )
  {
    return aAlreadyAddRefedPtr;
  }

template <class T>
inline
const already_AddRefed<T>
dont_AddRef( T* aRawPtr )
  {
    return already_AddRefed<T>(aRawPtr);
  }

template <class T>
inline
const already_AddRefed<T>
dont_AddRef( const already_AddRefed<T> aAlreadyAddRefedPtr )
  {
    return aAlreadyAddRefedPtr;
  }



class nsCOMPtr_helper
    /*
      An |nsCOMPtr_helper| transforms commonly called getters into typesafe forms
      that are more convenient to call, and more efficient to use with |nsCOMPtr|s.
      Good candidates for helpers are |QueryInterface()|, |CreateInstance()|, etc.

      Here are the rules for a helper:
        - it implements |operator()| to produce an interface pointer
        - (except for its name) |operator()| is a valid [XP]COM `getter'
        - the interface pointer that it returns is already |AddRef()|ed (as from any good getter)
        - it matches the type requested with the supplied |nsIID| argument
        - its constructor provides an optional |nsresult*| that |operator()| can fill
          in with an error when it is executed
          
      See |class nsQueryInterface| for an example.
    */
  {
    public:
      virtual nsresult operator()( const nsIID&, void** ) const = 0;
  };

class NS_COM nsQueryInterface : public nsCOMPtr_helper
  {
    public:
      nsQueryInterface( nsISupports* aRawPtr, nsresult* error )
          : mRawPtr(aRawPtr),
            mErrorPtr(error)
        {
          // nothing else to do here
        }

      virtual nsresult operator()( const nsIID& aIID, void** ) const;

    private:
      nsISupports*  mRawPtr;
      nsresult*     mErrorPtr;
  };

inline
const nsQueryInterface
do_QueryInterface( nsISupports* aRawPtr, nsresult* error = 0 )
  {
    return nsQueryInterface(aRawPtr, error);
  }

template <class T>
inline
void
do_QueryInterface( already_AddRefed<T>& )
  {
    // This signature exists soley to _stop_ you from doing the bad thing.
    //  Saying |do_QueryInterface()| on a pointer that is not otherwise owned by
    //  someone else is an automatic leak.  See <http://bugzilla.mozilla.org/show_bug.cgi?id=8221>.
  }

template <class T>
inline
void
do_QueryInterface( already_AddRefed<T>&, nsresult* )
  {
    // This signature exists soley to _stop_ you from doing the bad thing.
    //  Saying |do_QueryInterface()| on a pointer that is not otherwise owned by
    //  someone else is an automatic leak.  See <http://bugzilla.mozilla.org/show_bug.cgi?id=8221>.
  }



class nsCOMPtr_base
    /*
      ...factors implementation for all template versions of |nsCOMPtr|.

      This should really be an |nsCOMPtr<nsISupports>|, but this wouldn't work
      because unlike the

      Here's the way people normally do things like this
      
        template <class T> class Foo { ... };
        template <> class Foo<void*> { ... };
        template <class T> class Foo<T*> : private Foo<void*> { ... };
    */
  {
    public:

      nsCOMPtr_base( nsISupports* rawPtr = 0 )
          : mRawPtr(rawPtr)
        {
          // nothing else to do here
        }

      NS_COM ~nsCOMPtr_base();

      NS_COM void    assign_with_AddRef( nsISupports* );
      NS_COM void    assign_from_helper( const nsCOMPtr_helper&, const nsIID& );
      NS_COM void**  begin_assignment();

    protected:
      NS_MAY_ALIAS_PTR(nsISupports) mRawPtr;

      void
      assign_assuming_AddRef( nsISupports* newPtr )
        {
            /*
              |AddRef()|ing the new value (before entering this function) before
              |Release()|ing the old lets us safely ignore the self-assignment case.
              We must, however, be careful only to |Release()| _after_ doing the
              assignment, in case the |Release()| leads to our _own_ destruction,
              which would, in turn, cause an incorrect second |Release()| of our old
              pointer.  Thank <waterson@netscape.com> for discovering this.
            */
          nsISupports* oldPtr = mRawPtr;
          mRawPtr = newPtr;
          NSCAP_LOG_ASSIGNMENT(this, newPtr);
          NSCAP_LOG_RELEASE(this, oldPtr);
          if ( oldPtr )
            NSCAP_RELEASE(this, oldPtr);
        }
  };

// template <class T> class nsGetterAddRefs;

template <class T>
class nsCOMPtr
#ifdef NSCAP_FEATURE_USE_BASE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -