📄 _strongcomp.c
字号:
/*******************************************************************************
+
+ LEDA 3.0
+
+
+ _strongcomp.c
+
+
+ Copyright (c) 1992 by Max-Planck-Institut fuer Informatik
+ Im Stadtwald, 6600 Saarbruecken, FRG
+ All rights reserved.
+
*******************************************************************************/
/*******************************************************************************
* *
* STRONG_COMPONENTS (strong connected components) *
* *
*******************************************************************************/
#include <LEDA/graph_alg.h>
void scc_dfs(const graph& G, node v, node_array<int>& compnum,
node_array<int>& dfsnum,
list<node>& unfinished,
list<node>& roots,
node_array<int>& in_unfinished,
int& count1, int& count2 );
int STRONG_COMPONENTS(const graph& G, node_array<int>& compnum)
{
// int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)
// computes strong connected components (scc) of digraph G
// returns m = number of scc
// returns in node_array<int> compnum for each node an integer with
// compnum[v] = compnum[w] iff v and w belong to the same scc
// 0 <= compnum[v] <= m-1 for all nodes v
list<node> unfinished;
list<node> roots;
node_array<int> in_unfinished(G,false);
node_array<int> dfsnum(G,-1);
int count1 = 0;
int count2 = 0;
node v;
forall_nodes(v,G)
if (dfsnum[v] == -1)
scc_dfs(G,v,compnum,dfsnum,unfinished,roots,in_unfinished,count1,count2);
return count2;
}
void scc_dfs(const graph& G, node v, node_array<int>& compnum,
node_array<int>& dfsnum,
list<node>& unfinished,
list<node>& roots,
node_array<int>& in_unfinished,
int& count1, int& count2 )
{
node w;
dfsnum[v] = ++count1;
in_unfinished[v] = true;
unfinished.push(v);
roots.push(v);
forall_adj_nodes(w,v)
{ if (dfsnum[w]==-1)
scc_dfs(G,w,compnum,dfsnum,unfinished,roots,in_unfinished,count1,count2);
else
if (in_unfinished[w])
while (dfsnum[roots.head()]>dfsnum[w]) roots.pop();
}
if (v==roots.head())
{ do { w=unfinished.pop();
/* w is an element of the scc with root v */
in_unfinished[w] = false;
compnum[w] = count2;
} while (v!=w);
count2++;
roots.pop();
}
}
#include <LEDA/array.h>
int STRONG_COMPONENTS1(graph& G, node_array<int>& compnum)
{
node v,w;
int n = G.number_of_nodes();
int count = 0;
array<node> V(1,n);
list<node> S;
node_array<int> dfs_num(G), compl_num(G);
node_array<int> reached(G,false);
DFS_NUM(G,dfs_num,compl_num);
forall_nodes(v,G) V[compl_num[v]] = v;
G.rev();
int i;
for(i=n;i>0;i--)
{ if ( !reached[V[i]] )
{ S = DFS(G,V[i],reached);
forall(w,S) compnum[w] = count;
count++;
}
}
return count;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -