⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spline_no_2.m

📁 Incorporating Prior Knowledge in Cubic Spline Approximation - Application to the Identification of R
💻 M
字号:
function [spa1,spb1,spc1] = spline_no(cold,tt,cv,reler,ter,knots)
%
% cold -> valodi gorbe
% tt ->  idovektor a 12 v. 31 ponthoz
% cc -> 12x3 v. 31x3 matrix adatokhoz
% reler -> rel.zaj 0.05 0.10
% ter -> zaj tipusa: 0=fuggetlen,1=fuggo
% knots -> csomopontok
% cycnum -> ciklusszam
% P1 <- p1 vector
% P2 <- p2 vector
%

seeki = 0;
randn('seed',seeki);

n = length(knots); %number of nodes
nc = 3; %number of components
%+noise
ca = cv(:,1);
cb = cv(:,2);
cc = cv(:,3);
if ter==0,
 ca = ca + randn(size(ca)).*ca*reler;
 cb = cb + randn(size(cb)).*cb*reler;
 cc = cc + randn(size(cc)).*cc*reler;
else
 rr = randn(size(ca));
 ca = ca + rr.*ca*reler;
 cb = cb + rr.*cb*reler;
 cc = cc + rr.*cc*reler;
end
plot(tt,ca,'k.',tt,cb,'k.',tt,cc,'k.');
%no hard constr.
%A = zeros(3,3*2*n);
%b = zeros(3,1);
%A(1,1) = 1;
%A(2,2*n+1) = 1;
%A(3,4*n+1) = 1;
%b(1) = 1;
%b(2) = 0;
%b(3) = 0;
A = []; b = [];
An = []; bn = [];
%no soft. constr.
s = [];
lambda1 = 0;
lambda2 = 0;
w = [0 0 0];
sum1 = 0;
sum2 = 0;
%Spline
warning off
[spa1,spb1,spc1] = fspline3([tt,tt,tt],[ca,cb,cc],knots,s,lambda1,lambda2,w,sum1,sum2,A,b,An,bn);
warning on

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -