📄 ttls.m
字号:
function [x_k,rho,eta] = ttls(V1,k,s1)%TTLS Truncated TLS regularization.%% [x_k,rho,eta] = ttls(V1,k,s1)%% Computes the truncated TLS solution% x_k = - V1(1:n,k+1:n+1)*pinv(V1(n+1,k+1:n+1))% where V1 is the right singular matrix in the SVD of the matrix% [A,b] = U1*diag(s1)*V1' .%% If k is a vector, then x_k is a matrix such that% x_k = [ x_k(1), x_k(2), ... ] .% If k is not specified, k = n is used.%% The solution norms and TLS residual norms corresponding to x_k are% returned in eta and rho, respectively. Notice that the singular% values s1 are required to compute rho.% Reference: R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O'Leary,% "Regularization by truncated total least squares", SIAM J. Sci. Comput. 18% (1997), 1223-1241,% Per Christian Hansen, IMM, 03/18/93.% Initialization.[n1,m1] = size(V1); n = n1-1;if (m1 ~= n1), error('The matrix V1 must be square'), endif (nargin == 1), k = n; endlk = length(k);if (min(k) < 1 | max(k) > n) error('Illegal truncation parameter k')endx_k = zeros(n,lk);if (nargout > 1) if (nargin < 3) error('The singular values must also be specified') end ns = length(s1); rho = zeros(lk,1);endif (nargout==3), eta = zeros(lk,1); end% Treat each k separately.for j=1:lk i = k(j); v = V1(n1,i+1:n1); gamma = 1/(v*v'); x_k(:,j) = - V1(1:n,i+1:n1)*v'*gamma; if (nargout > 1), rho(j) = norm(s1(i+1:ns)); end if (nargout == 3), eta(j) = sqrt(gamma - 1); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -