📄 wing.m
字号:
function [A,b,x] = wing(n,t1,t2)%WING Test problem with a discontinuous solution.%% [A,b,x] = wing(n,t1,t2)%% Discretization of a first kind Fredholm integral eqaution with% kernel K and right-hand side g given by% K(s,t) = t*exp(-s*t^2) 0 < s,t < 1% g(s) = (exp(-s*t1^2) - exp(-s*t2^2)/(2*s) 0 < s < 1% and with the solution f given by% f(t) = | 1 for t1 < t < t2% | 0 elsewhere.%% Here, t1 and t2 are constants satisfying t1 < t2. If they are% not speficied, the values t1 = 1/3 and t2 = 2/3 are used.% Reference: G. M. Wing, "A Primer on Integral Equations of the% First Kind", SIAM, 1991; p. 109.% Discretized by Galerkin method with orthonormal box functions;% both integrations are done by the midpoint rule.% Per Christian Hansen, IMM, 09/17/92.% Initialization.if (nargin==1) t1 = 1/3; t2 = 2/3;else if (t1 > t2), error('t1 must be smaller than t2'), endendA = zeros(n,n); h = 1/n; sh = sqrt(h);% Set up matrix.sti = ([1:n]-0.5)*h;for i=1:n A(i,:) = h*sti.*exp(-sti(i)*sti.^2);end% Set up right-hand side.if (nargout > 1) b = sqrt(h)*0.5*(exp(-sti*t1^2)' - exp(-sti*t2^2)')./sti';end% Set up solution.if (nargout==3) I = find(t1 < sti & sti < t2); x = zeros(n,1); x(I) = sqrt(h)*ones(length(I),1);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -