⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plsqr.m

📁 求解离散病态问题的正则化方法matlab 工具箱
💻 M
字号:
function [X,rho,eta,F] = plsqr(A,L,W,b,k,reorth,sm)%PLSQR "Preconditioned" version of the LSQR Lanczos bidiagonalization algorithm.%% [X,rho,eta,F] = plsqr(A,L,W,b,k,reorth,sm)%% Performs k steps of the `preconditioned' LSQR Lanczos% bidiagonalization algorithm applied to the system%    min || (A*L_p) x - b || ,% where L_p is the A-weighted generalized inverse of L.  Notice% that the matrix W holding a basis for the null space of L must% also be specified.%% The routine returns all k solutions, stored as columns of% the matrix X.  The solution seminorm and the residual norm are% returned in eta and rho, respectively.%% If the generalized singular values sm of (A,L) are also provided,% then glsqr computes the filter factors associated with each step% and stores them columnwise in the matrix F.%% Reorthogonalization is controlled by means of reorth:%    reorth = 0 : no reorthogonalization (default),%    reorth = 1 : reorthogonalization by means of MGS,%    reorth = 2 : Householder-reorthogonalization.% References: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for% sparse linear equations and sparse least squares", ACM Trans.% Math. Software 8 (1982), 43-71.% P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.% Per Christian Hansen, IMM, 05/26/93.% The fudge threshold is used to prevent filter factors from exploding.fudge_thr = 1e-4;% Initializationif (k < 1), error('Number of steps k must be positive'), endif (nargin==5), reorth = 0; endif (nargout==4 & nargin<7), error('Too few input arguments'), end[m,n] = size(A); X = zeros(n,k); [pp,n1] = size(L);if (n1 ~= n | m < n | n < pp)  error('Incorrect dimensions of A and L')endif (reorth==0)  UV = 0;elseif (reorth==1)  U = zeros(m,k); V = zeros(pp,k); UV = 1;elseif (reorth==2)  if (k>=n), error('No. of iterations must satisfy k < n'), end  UV = 0; HHU = zeros(m,k); HHV = zeros(pp,k);  HHalpha = zeros(1,k); HHbeta = HHalpha;else  error('Illegal reorth')endif (nargout > 1)  eta = zeros(k,1); rho = eta;  c2 = -1; s2 = 0; xnorm = 0; z = 0;endif (nargin==7)  [ls,ms] = size(sm);  F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv;  s = (sm(:,1)./sm(:,2)).^2;end% Prepare for computations with L_p.[NAA,x_0] = pinit(W,A,b);% By subtracting the component A*x_0 from b we insure that% the corrent residual norms are computed.b = b - A*x_0;% Prepare for LSQR iteration.v = zeros(pp,1); x = v; beta = norm(b);if (beta==0), error('Right-hand side must be nonzero'), endif (reorth==2)  [beta,HHbeta(1),HHU(:,1)] = gen_hh(b);endu = b/beta; if (UV), U(:,1) = u; endr = ltsolve(L,A'*u,W,NAA); alpha = norm(r);if (reorth==2)  [alpha,HHalpha(1),HHV(:,1)] = gen_hh(r);endv = r/alpha; if (UV), V(:,1) = v; endphi_bar = beta; rho_bar = alpha; w = v;if (nargin==7), Fv = s/(alpha*beta); Fw = Fv; end% Perform Lanczos bidiagonalization with/without reorthogonalization.for i=2:k+1  alpha_old = alpha; beta_old = beta;  % Compute (A*L_p)*v - alpha*u.  p = A*lsolve(L,v,W,NAA) - alpha*u;  if (reorth==0)    beta = norm(p); u = p/beta;  elseif (reorth==1)    for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end    beta = norm(p); u = p/beta;  else    for j=1:i-1      p(j:m) = app_hh(p(j:m),HHbeta(j),HHU(j:m,j));    end    [beta,HHbeta(i),HHU(i:m,i)] = gen_hh(p(i:m));    u = zeros(m,1); u(i) = 1;    for j=i:-1:1      u(j:m) = app_hh(u(j:m),HHbeta(j),HHU(j:m,j));    end  end  % Compute L_p'*A'*u - beta*v.  r = ltsolve(L,A'*u,W,NAA) - beta*v;  if (reorth==0)    alpha = norm(r); v = r/alpha;  elseif (reorth==1)    for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end    alpha = norm(r); v = r/alpha;  else    for j=1:i-1      r(j:pp) = app_hh(r(j:pp),HHalpha(j),HHV(j:pp,j));    end    [alpha,HHalpha(i),HHV(i:pp,i)] = gen_hh(r(i:pp));    v = zeros(pp,1); v(i) = 1;    for j=i:-1:1      v(j:pp) = app_hh(v(j:pp),HHalpha(j),HHV(j:pp,j));    end  end  % Store U and V if necessary.  if (UV), U(:,i) = u; V(:,i) = v; end  % Construct and apply orthogonal transformation.  rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho;  s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha;  phi = c1*phi_bar; phi_bar = s1*phi_bar;  % Compute solution norm and residual norm if necessary;  if (nargout > 1)    delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z;    z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar);    gamma = pythag(gamma_bar,theta);    c2 = gamma_bar/gamma; s2 = theta/gamma;    z = rhs/gamma; xnorm = pythag(xnorm,z);    rho(i-1) = abs(phi_bar);  end  % If required, compute the filter factors.  if (nargin==7)    if (i==2)      Fv_old = Fv;      Fv  = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta);      F(:,i-1) = (phi/rrho)*Fw;    else      tmp = Fv;      Fv = (Fv.*(s - beta^2 - alpha_old^2) - ...                 Fv_old*alpha_old*beta_old)/(alpha*beta);      Fv_old = tmp;      F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw;    end    if (i > 3)      f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr);      if (length(f) > 0), F(f,i-1) = ones(length(f),1); end    end    Fw = Fv - (theta/rrho)*Fw;  end  % Update the solution.  x = x + (phi/rrho)*w; w = v - (theta/rrho)*w;  X(:,i-1) = lsolve(L,x,W,NAA) + x_0;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -