⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bidiag.m

📁 求解离散病态问题的正则化方法matlab 工具箱
💻 M
字号:
function [U,B,V] = bidiag(A)%BIDIAG Bidiagonalization of an m-times-n matrix with m >= n.%% B = bidiag(A)% [U,B,V] = bidiag(A)% % Computes the bidiagonalization of the m-times-n matrix A with m >= n:%     A = U*B*V' ,% where B is an upper bidiagonal n-times-n matrix, and U and V have% orthogonal columns.  The matrix B is stored as a sparse matrix.% Reference: L. Elden, "Algorithms for regularization of ill-% conditioned least-squares problems", BIT 17 (1977), 134-145.% Per Christian Hansen, IMM, 06/30/97.% Initialization.[m,n] = size(A);if (m < n), error('Illegal dimensions of A'), endB = sparse(n,n);if (nargout> 1), U = [eye(n);zeros(m-n,n)]; betaU = zeros(n,1); endif (nargout==3), V = eye(n); betaV = zeros(n,1); end% Bidiagonalization; save Householder quantities.if (m > n), k_last = n; else k_last = n-1; endfor k=1:k_last  [B(k,k),beta,A(k:m,k)] = gen_hh(A(k:m,k));  if (k < n), A(k:m,k+1:n) = app_hh(A(k:m,k+1:n),beta,A(k:m,k)); end  if (nargout>1), betaU(k) = beta; end  if (k < n-1)    [B(k,k+1),beta,v] = gen_hh(A(k,k+1:n)'); A(k,k+1:n) = v';    A(k+1:m,k+1:n) = app_hh(A(k+1:m,k+1:n)',beta,A(k,k+1:n)')';    if (nargout==3), betaV(k) = beta;, end  elseif (k == n-1)    B(n-1,n) = A(n-1,n);  endend% Save bottom element if A is square.if (k_last < n), B(n,n) = A(n,n); end% Compute U if wanted.if (nargout>1)  for k=k_last:-1:1    U(k:m,k:n) = app_hh(U(k:m,k:n),betaU(k),A(k:m,k));  endend% Compute V if wanted.if (nargout==3)  for k=n-2:-1:1    V(k+1:n,k:n) = app_hh(V(k+1:n,k:n),betaV(k),A(k,k+1:n)');  endendif (nargout < 2), U = B; end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -