⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gcv.m

📁 求解离散病态问题的正则化方法matlab 工具箱
💻 M
字号:
function [reg_min,G,reg_param] = gcv(U,s,b,method)%GCV Plot the GCV function and find its minimum.%% [reg_min,G,reg_param] = gcv(U,s,b,method)% [reg_min,G,reg_param] = gcv(U,sm,b,method)  ,  sm = [sigma,mu]%% Plots the GCV-function%          || A*x - b ||^2%    G = -------------------%        (trace(I - A*A_I)^2% as a function of the regularization parameter reg_param.% Here, A_I is a matrix which produces the regularized solution.%% The following methods are allowed:%    method = 'Tikh' : Tikhonov regularization   (solid line )%    method = 'tsvd' : truncated SVD or GSVD     (o markers  )%    method = 'dsvd' : damped SVD or GSVD        (dotted line)% If method is not specified, 'Tikh' is default.%% If any output arguments are specified, then the minimum of G is% identified and the corresponding reg. parameter reg_min is returned.% Per Christian Hansen, IMM, 12/29/97.% Reference: G. Wahba, "Spline Models for Observational Data",% SIAM, 1990.% Set defaults.if (nargin==3), method='Tikh'; end  % Default method.npoints = 200;                      % Number of points on the curve.smin_ratio = 16*eps;                % Smallest regularization parameter.% Initialization.[m,n] = size(U); [p,ps] = size(s);beta = U'*b; beta2 = b'*b - beta'*beta;if (ps==2)  s = s(p:-1:1,1)./s(p:-1:1,2); beta = beta(p:-1:1);endif (nargout > 0), find_min = 1; else find_min = 0; endif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))     % Vector of regularization parameters.  reg_param = zeros(npoints,1); G = reg_param; s2 = s.^2;  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));  ratio = 1.2*(s(1)/reg_param(npoints))^(1/(npoints-1));  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end    % Intrinsic residual.  delta0 = 0;  if (m > n & beta2 > 0), delta0 = beta2; end    % Vector of GCV-function values.  for i=1:npoints    G(i) = gcvfun(reg_param(i),s2,beta(1:p),delta0,m-n);  end     % Plot GCV function.  loglog(reg_param,G,'-'), xlabel('\lambda'), ylabel('G(\lambda)')  title('GCV function')    % Find minimum, if requested.  if (find_min)    [minG,minGi] = min(G); % Initial guess.    reg_min = fmin('gcvfun',...      reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...      [],s2,beta(1:p),delta0,m-n); % Minimizer.    minG = gcvfun(reg_min,s2,beta(1:p),delta0,m-n); % Minimum of GCV function.    ax = axis;    HoldState = ishold; hold on;    loglog(reg_min,minG,'*',[reg_min,reg_min],[minG/1000,minG],':')    title(['GCV function, minimum at \lambda = ',num2str(reg_min)])    axis(ax)    if (~HoldState), hold off; end  endelseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))     % Vector of GCV-function values.  rho2(p-1) = beta(p)^2;  if (m > n & beta2 > 0), rho2(p-1) = rho2(p-1) + beta2; end  for k=p-2:-1:1, rho2(k) = rho2(k+1) + beta(k+1)^2; end  for k=1:p-1    G(k) = rho2(k)/(m - k + (n - p))^2;  end  reg_param = [1:p-1]';    % Plot GCV function.  semilogy(reg_param,G,'o'), xlabel('k'), ylabel('G(k)')  title('GCV function')    % Find minimum, if requested.  if (find_min)    [minG,reg_min] = min(G);    ax = axis;    HoldState = ishold; hold on;    semilogy(reg_min,minG,'*',[reg_min,reg_min],[minG/1000,minG],'--')    title(['GCV function, minimum at k = ',num2str(reg_min)])    axis(ax);    if (~HoldState), hold off; end  endelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))  % Vector of regularization parameters.  reg_param = zeros(npoints,1); G = reg_param;  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end    % Intrinsic residual.  delta0 = 0;  if (m > n & beta2 > 0), delta0 = beta2; end    % Vector of GCV-function values.  for i=1:npoints    G(i) = gcvfun(reg_param(i),s,beta(1:p),delta0,m-n,1);  end   % Plot GCV function.  loglog(reg_param,G,':'), xlabel('\lambda'), ylabel('G(\lambda)')  title('GCV function')    % Find minimum, if requested.  if (find_min)    [minG,minGi] = min(G); % Initial guess.    reg_min = fmin('gcvfun',...      reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...      [],s,beta(1:p),delta0,m-n,1); % Minimizer.    minG = gcvfun(reg_min,s,beta(1:p),delta0,m-n,1); % Minimum of GCV function.    ax = axis;    HoldState = ishold; hold on;    loglog(reg_min,minG,'*',[reg_min,reg_min],[minG/1000,minG],'--')    title(['GCV function, minimum at \lambda = ',num2str(reg_min)])    axis(ax)    if (~HoldState), hold off; end  endelseif (strncmp(method,'mtsv',4) | strncmp(method,'ttls',4))  error('The MTSVD and TTLS methods are not supported')else, error('Illegal method'), end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -