📄 dsvd.m
字号:
function [x_lambda,rho,eta] = dsvd(U,s,V,b,lambda)%DSVD Damped SVD and GSVD regularization.%% [x_lambda,rho,eta] = dsvd(U,s,V,b,lambda)% [x_lambda,rho,eta] = dsvd(U,sm,X,b,lambda) , sm = [sigma,mu]%% Computes the damped SVD solution defined as% x_lambda = V*inv(diag(s + lambda))*U'*b .% If lambda is a vector, then x_lambda is a matrix such that% x_lambda = [ x_lambda(1), x_lambda(2), ... ] .%% If sm and X are specified, then the damped GSVD solution:% x_lambda = X*[ inv(diag(sigma + lambda*mu)) 0 ]*U'*b% [ 0 I ]% is computed.%% The solution and residual norms are returned in eta and rho.% Reference: M. P. Ekstrom & R. L. Rhoads, "On the application of% eigenvector expansions to numerical deconvolution", J. Comp.% Phys. 14 (1974), 319-340.% The extension to GSVD is by P. C. Hansen.% Per Christian Hansen, IMM, 12/22/97.% Initialization.if (min(lambda)<0) error('Illegal regularization parameter lambda')endn = size(V,1); [p,ps] = size(s);beta = U(:,1:p)'*b;ll = length(lambda); x_lambda = zeros(n,ll);rho = zeros(ll,1); eta = zeros(ll,1);% Compute x_lambda.if (ps==1) for i=1:ll x_lambda(:,i) = V(:,1:p)*(beta./(s + lambda(i))); rho(i) = lambda(i)*norm(beta./(s + lambda(i))); eta(i) = norm(x_lambda(:,i)); endelse x0 = V(:,p+1:n)*U(:,p+1:n)'*b; for i=1:ll x_lambda(:,i) = V(:,1:p)*(beta./(s(:,1) + lambda(i)*s(:,2))) + x0; rho(i) = lambda(i)*norm(beta./(s(:,1)./s(:,2) + lambda(i))); eta(i) = norm(x_lambda(:,i)); endendif (nargout > 1 & size(U,1) > p) rho = sqrt(rho.^2 + norm(b - U(:,1:n)*[beta;U(:,p+1:n)'*b])^2);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -