⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pnu.m

📁 求解离散病态问题的正则化方法matlab 工具箱
💻 M
字号:
function [X,rho,eta,F] = pnu(A,L,W,b,k,nu,sm)%PNU "Preconditioned" version of Brakhage's nu-method.%% [X,rho,eta,F] = pnu(A,L,W,b,k,nu,sm)%% Performs k steps of a `preconditioned' version of Brakhage's% nu-method for the problem%    min || (A*L_p) x - b || ,% where L_p is the A-weighted generalized inverse of L.  Notice% that the matrix W holding a basis for the null space of L must% also be specified.%% The routine returns all k solutions, stored as columns of% the matrix X.  The solution seminorm and residual norm are returned% in eta and rho, respectively.%% If nu is not specified, nu = .5 is the default value, which gives% the Chebychev method of Nemirovskii and Polyak.%% If the generalized singular values sm of (A,L) are also provided,% then pnu computes the filter factors associated with each step and% stores them columnwise in the matrix F.% Reference: H. Brakhage, "On ill-posed problems and the method of% conjugate gradients"; in H. W. Engl & G. W. Groetsch, "Inverse and% Ill-Posed Problems", Academic Press, 1987. % Martin Hanke, Institut fuer Praktische Mathematik, Universitaet% Karlsruhe and Per Christian Hansen, IMM, 06/25/92.% Set parameters.l_steps = 3;      % Number of Lanczos steps for est. of || A*L_p ||.fudge   = 0.99;   % Scale A and b by fudge/|| A*L_p ||.fudge_thr = 1e-4; % Used to prevent filter factors from exploding. % Initialization.if (k < 1), error('Number of steps k must be positive'), endif (nargin==5), nu = .5; end[m,n] = size(A); [p,n1] = size(L); X = zeros(n,k);if (nargout > 1)  rho = zeros(k,1); eta = rho;end;if (nargin==7)  F = zeros(n,k); Fd = zeros(n,1); s = (sm(:,1)./sm(:,2)).^2;endV = zeros(p,l_steps); B = zeros(l_steps+1,l_steps);v = zeros(p,1); eta = zeros(l_steps+1,1); % Prepare for computations with L_p.[NAA,x_0] = pinit(W,A,b); x1 = x_0;% Compute a rough estimate of || A*L_p || by means of a few% steps of Lanczos bidiagonalization, and scale A and b such% that || A*L_p || is slightly less than one.b_0 = b - A*x_0; beta = norm(b_0); u = b_0/beta;for i=1:l_steps  r = ltsolve(L,A'*u,W,NAA) - beta*v;  alpha = norm(r); v = r/alpha;  B(i,i) = alpha; V(:,i) = v;  p = A*lsolve(L,v,W,NAA) - alpha*u;  beta = norm(p); u = p/beta;  B(i+1,i) = beta;endscale = fudge/norm(B); A = scale*A; b = scale*b;if (nargin==7), s = scale^2*s; end% Prepare for iteration.x  = x_0;z  = -scale*b_0;r  = A'*z;d1 = ltsolve(L,r);d  = lsolve(L,d1,W,NAA);if (nargout>2), x1 = L*x_0; end% Iterate.for j=0:k-1     % Updates.  alpha = 4*(j+nu)*(j+nu+0.5)/(j+2*nu)/(j+2*nu+0.5);  beta  = -(j+nu)*(j+1)*(j+0.5)/(j+2*nu)/(j+2*nu+0.5)/(j+nu+1);  Ad  = A*d; AAd = A'*Ad;  x   = x - alpha*d;  r   = r - alpha*AAd;  rr1 = ltsolve(L,r);  rr  = lsolve(L,rr1,W,NAA);  d   = rr - beta*d;  X(:,j+1) = x;  if (nargout>1 )    z = z - alpha*Ad; rho(j+1) = norm(z)/scale;  end;  if (nargout>2)    x1 = x1 - alpha*d1; d1 = rr1 - beta*d1;    eta(j+1) = norm(x1);  end;    % Filter factors.  if (nargin==7)    if (j==0)      F(:,1) = alpha*s;      Fd = s - s.*F(:,1) + beta*s;    else      F(:,j+1) = F(:,j) + alpha*Fd;      Fd = s - s.*F(:,j+1) + beta*Fd;    end    if (j > 1)      f = find(abs(F(:,j)-1) < fudge_thr & abs(F(:,j-1)-1) < fudge_thr);      if (length(f) > 0), F(f,j+1) = ones(length(f),1); end    end  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -