⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgls.m

📁 求解离散病态问题的正则化方法matlab 工具箱
💻 M
字号:
function [X,rho,eta,F] = cgls(A,b,k,reorth,s)%CGLS Conjugate gradient algorithm applied implicitly to the normal equations.%% [X,rho,eta,F] = cgls(A,b,k,reorth,s)%% Performs k steps of the conjugate gradient algorithm applied% implicitly to the normal equations A'*A*x = A'*b.%% The routine returns all k solutions, stored as columns of% the matrix X.  The corresponding solution and residual norms% are returned in the vectors eta and rho, respectively.%% If the singular values s are also provided, cgls computes the% filter factors associated with each step and stores them% columnwise in the matrix F.%% Reorthogonalization of the normal equation residual vectors% A'*(A*X(:,i)-b) is controlled by means of reorth:%    reorth = 0 : no reorthogonalization (default),%    reorth = 1 : reorthogonalization by means of MGS.% References: A. Bjorck, "Numerical Methods for Least Squares Problems",% SIAM, Philadelphia, 1996.% C. R. Vogel, "Solving ill-conditioned linear systems using the% conjugate gradient method", Report, Dept. of Mathematical% Sciences, Montana State University, 1987. % Per Christian Hansen, IMM, 07/02/97.% The fudge threshold is used to prevent filter factors from exploding.fudge_thr = 1e-4; % Initialization.if (k < 1), error('Number of steps k must be positive'), endif (nargin==3), reorth = 0; endif (nargout==4 & nargin<5), error('Too few input arguments'), endif (reorth<0 | reorth>1), error('Illegal reorth'), end[m,n] = size(A); X = zeros(n,k);if (reorth==1), ATr = zeros(n,k); endif (nargout > 1)  eta = zeros(k,1); rho = eta;endif (nargin==5)  F = zeros(n,k); Fd = zeros(n,1); s2 = s.^2;end% Prepare for CG iteration.x = zeros(n,1);d = A'*b;r = b;normr2 = d'*d;if (reorth==1), ATr(:,1) = d/norm(d); end% Iterate.for j=1:k  % Update x and r vectors.  Ad = A*d; alpha = normr2/(Ad'*Ad);  x  = x + alpha*d;  r  = r - alpha*Ad;  s  = A'*r;  % Reorthogonalize s to previous s-vectors, if required.  if (reorth==1)    for i=1:j-1, s = s - (ATr(:,i)'*s)*ATr(:,i); end    ATr(:,j) = s/norm(s);  end  % Update d vector.  normr2_new = s'*s;  beta = normr2_new/normr2;  normr2 = normr2_new;  d = s + beta*d;  X(:,j) = x;    % Compute norms, if required.  if (nargout>1), rho(j) = norm(r); end  if (nargout>2), eta(j) = norm(x); end  % Compute filter factors, if required.  if (nargin==5)    if (j==1)      F(:,1) = alpha*s2;      Fd = s2 - s2.*F(:,1) + beta*s2;    else      F(:,j) = F(:,j-1) + alpha*Fd;      Fd = s2 - s2.*F(:,j) + beta*Fd;    end    if (j > 2)      f = find(abs(F(:,j-1)-1) < fudge_thr & abs(F(:,j-2)-1) < fudge_thr);      if (length(f) > 0), F(f,j) = ones(length(f),1); end    end  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -