📄 wavelet resources.htm
字号:
Wavelet-Galerkin Method for the Stokes-Equations,"</A> also <A
href="ftp://ftp.igpm.rwth-aachen.de/pub/dahmen/igpm_111r_f.ps.Z">full
version</A> with pictures.
<LI>R. Glowinski, T. Pan , R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9201.ps.Z">"Wavelet and Finite
Element Solutions for the Neumann Problem Using Fictitious Domains" </A>
<LI>R. Glowinski, A. Rieder, R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9306.ps.Z">"A Wavelet Multigrid
Preconditioner for Dirichlet Boundary Value Problems in General
Domains." </A>
<LI>R. Glowinski, A. Rieder, R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9414.ps.Z">"A Preconditioned
CG-Method for Wavelet-Galerkin Discretizations of Elliptic Problems"
</A>
<LI>F. Heurtaux, F. Planchon and M. V. Wickerhauser, <A
href="http://wuarchive.wustl.edu/doc/techreports/wustl.edu/math/papers/burgers.ps.Z">"Scale
Decomposition in Burgers' Equation"</A>
<LI>A. Jiang, <A
href="ftp://ftp.math.ucla.edu/pub/camreport/cam96-20.ps.gz>" methods=""
a wavelet problems?< dependent time certain for based fast>. </A>
<LI><A href="ftp://ftp.math.ucla.edu/pub/camreport/cam96-20.ps.gz>"
methods="" a wavelet problems?< dependent time certain for based fast>J.
H. Keiser, </A><A
href="ftp://amath-ftp.colorado.edu/pub/wavelets/papers/keiser_thesis.ps.Z">"On
I. Wavelet Based Approach to Numerical Solution on Nonlinear Partial
Differential Equations and II. Nonlinear Waves in Fully Discrete
Dynamical Systems."</A>
<LI>A. Kunoth, <A
href="ftp://ftp.igpm.rwth-aachen.de/pub/kunoth/cosh.ps.Z">"Multilevel
Preconditioning -- Appending Boundary Conditions by Lagrange
Multipliers."</A>
<LI>G. Leaf and J. M. Restrepo, <A
href="ftp://info.mcs.anl.gov/pub/tech_reports/reports/P448.ps.Z">"Wavelet-Galerkin
Discretization of Hyperbolic Equations."</A>
<LI>J. Lewalle, <A
href="http://www.mame.syr.edu/faculty/lewalle/acta-94.html">"Wavelet
Transforms of some Equations of Fluid Mechanics"</A>
<LI>J. Lewalle, <A
href="http://www.mame.syr.edu/faculty/lewalle/dissip-93.html">"Energy
Dissipation in the Wavelet-Transformed Navier-Stokes Equations" </A>
<LI>J. Lewalle, <A
href="http://www.mame.syr.edu/faculty/lewalle/camb-93.html">"On the
effect of boundary conditions on the multifractal statistics of
incompressible turbulence"</A>
<LI>J. Lewalle, <A
href="http://www.mame.syr.edu/faculty/lewalle/hamdiff.html">"Diffusion
is Hamiltonian".</A> <!--<li>J. Lewalle, <a
href="http://www.mame.syr.edu/faculty/lewalle/green.html">"Gaussian
Wavelets as Green's functions".</a> </li>-->
<LI>D. Lu, T. Ohyoshi and L. Zhu, <A
href="ftp://ftp.mathsoft.com/pub/wavelets/bc.ps.gz">"Treatment of
Boundary Conditions in the Application of Wavelet-Galerkin Method to a
SH Wave Problem"</A>
<LI>P. Monasse and V. Perrier, <A
href="ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/wav_interval.ps.Z">"Orthonormal
Wavelet Bases Adapted for Partial Differential Equations with Boundary
Conditions." </A>
<LI>A. Rieder and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9310.ps.Z">"On the Robustness of
the Damped V-Cycle of the Wavelet Frequency Decompositions Multigrid
Method" </A>
<LI>A. Rieder, R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9307.ps.Z">"A Wavelet Approach to
Robust Multilevel Solvers for Anisotropic Elliptic Problems." </A>
<LI>A. Rieder, R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9413.ps.Z">"On the Wavelet
Frequency Decomposition Method" </A>
<LI>K. Urban, <A
href="ftp://ftp.igpm.rwth-aachen.de/pub/urban/igpm_106.tar.Z">"A
Wavelet-Galerkin Algorithm for the Driven-Cavity-Stokes-Problem in Two
Space Dimensions."</A>
<LI>O. V. Vasilyev and S. Paolucci, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/adaptive.ps.gz">"
A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving
Partial Differential Equations in a Finite Domain."</A>
<LI>O. V. Vasilyev and S. Paolucci, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/TAC_ASME.ps.gz">"
Thermoacoustic Wave Propagation Modeling Using a Dynamically Adaptive
Wavelet Collocation Method."</A>
<LI>O. V. Vasilyev and S. Paolucci, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/fast_2d.ps.gz">"
A Fast Adaptive Wavelet Collocation Algorithm for Multi-Dimensional
PDEs."</A> with <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/fast_2d_figures.ps.gz">figures</A>.
<LI>O. V. Vasilyev, S. Paolucci and M. Sen, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/WML.ps.gz">"
A Multilevel Wavelet Collocation Method for Solving Partial Differential
Equations in a Finite Domain."</A>
<LI>O. V. Vasilyev, Y. Y. Podladchikov and D. A. Yuen, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/melt_1d.ps.gz">"
Modeling of Compaction Driven Flow in Poro-Viscoelastic Medium Using
Adaptive Wavelet Collocation Method."</A> with <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/melt_1d_figures.ps.gz">figures</A>.
<LI>O. V. Vasilyev, D. A. Yuen and S. Paolucci, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/comp_phys.ps.gz">"
The Solution of PDEs Using Wavelets."</A> with <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/comp_phys_figures.ps.gz">figures</A>.
<LI>O. V. Vasilyev, D. A. Yuen and Y. Y. Podladchikov, <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/wlt_grl.ps.gz">"
Applicability of Wavelet Algorithm for Geophysical Viscoelastic
Flow."</A> with <A
href="http://landau.mae.missouri.edu/~vasilyev/Publications/wlt_grl_figures.ps.gz">figures</A>.
<LI>R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9202.ps.Z">"Wavelet Solutions for
the Dirichlet Problem" </A>
<LI>R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9203.ps.Z">"Wavelet Interpolation
and Approximate Solution of Elliptic Partial Differential Equations"
</A>
<LI>R. O. Wells, Jr. and X. Zhou, <A
href="ftp://cml.rice.edu/pub/reports/9214.ps.Z">"Representing the
Geometry of Domains by Wavelets with Applications to Partial
Differential Equations" </A>
<LI>R. O. Wells, Jr., <A
href="ftp://cml.rice.edu/pub/reports/9409.ps.Z">"Multiscale Applications
of Wavelets to Solutions of Partial Differential Equations" </A></LI></UL>
<HR>
<H3>Wavelets and Numerical Analysis</H3>
<UL>
<LI>G. Beylkin, R. Coifman and V. Rokhlin, <A
href="ftp://pascal.math.yale.edu/pub/wavelets/papers/bcr.tex">"Fast
Wavelet Transforms and Numerical Algorithms I."</A>
<LI>G. Beylkin, <A
href="ftp://amath-ftp.colorado.edu/pub/wavelets/papers/ddx.ps.Z">"On the
Representation of Operators in Bases of Compactly Supported
Wavelets."</A>
<LI>G. Beylkin, <A
href="ftp://amath-ftp.colorado.edu/pub/wavelets/papers/malgToulouse.ps.Z">"On
the Fast Algorithm for Multiplication of Functions in the Wavelet
Bases."</A>
<LI>G. Beylkin, <A
href="ftp://amath-ftp.colorado.edu/pub/wavelets/papers/AMS93.ps.Z">"Wavelets
and Fast Numerical Algorithms."</A> Lecture notes for an AMS short
course, 1993.
<LI>G. Beylkin, <A
href="ftp://amath-ftp.colorado.edu/pub/wavelets/papers/INRIA.ps.Z">"Wavelets,
Multiresolution Analysis and Fast Numerical Algorithms."</A> Draft of
INRIA lectures, May 1991.
<LI>G. Beylkin and M. E. Brewster, <A
href="ftp://amath-ftp.colorado.edu/pub/wavelets/papers/homog.ps.Z">"A
Multiresolution Strategy for Numerical Homogenization."</A>
<LI>P. Charton and V. Perrier, <A
href="ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/produits.ps.Z">"Produits
Rapides Matrices-Vecteur en Bases d'Ondelettes: Application a la
Resolution Numerique d'Equation aux Derivees Partielles." </A>
<LI>P. Charton, <A
href="ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/these_charton.ps.Z">"Produits
de Matrices Rapides en Bases d'Ondelettes: Application a la Resolution
Numerique d'Equation aux Derivees Partielles." </A>
<LI>N. H. Getz, <A
href="http://www.inversioninc.com/papers/DPWT.ps.gz">"A Fast Discrete
Periodic Wavelet Transform."</A> An associated <A
href="ftp://www.inversioninc.com/DPWT/DPWTtoolbox">toolbox</A> of Matlab
routines is also available.
<LI>L. Jameson, <A
href="ftp://ftp.icase.edu/pub/techreports/93/93-80.ps.Z">"On the
Spline-Based Wavelet Differentiation Matrix."</A>
<LI>L. Jameson, <A
href="ftp://ftp.icase.edu/pub/techreports/93/93-94.ps.Z">"On the
Differention Matrix for Daubechies-Based Wavelets on an Interval."</A>
<LI>L. Jameson, <A
href="ftp://ftp.icase.edu/pub/techreports/93/93-95.ps.Z">"On the
Daubechies-Based Wavelet Differentiation Matrix."</A>
<LI>L. Jameson, <A
href="ftp://ftp.icase.edu/pub/techreports/94/94-09.ps.Z">"On the Wavelet
Optimized Finite Difference Method."</A>
<LI>E. Kolaczyk, <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Text.ps.Z">"Wavelet
Methods for the Inversion of Certain Homogeneous Linear Operators in the
Presence of Noisy Data,"</A> with <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Fig5.1.ps.Z">fig
5.1,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Figs5.2n3.ps.Z">figs
5.2,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Fig5.4.ps.Z">fig
5.4,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Fig5.5.ps.Z">fig
5.5,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Figs5.6n7.ps.Z">figs
5.6,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Figs5.8n9.ps.Z">figs
5.8,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Fig5.10.ps.Z">fig
5.10,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Figs5.11n12.ps.Z">figs
5.11,</A> <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Fig5.13.ps.Z">fig
5.13,</A> and <A
href="ftp://galton.uchicago.edu/pub/kolaczyk/Thesis/KolaczykThesis_Figs5.14n15.ps.Z">figs
5.14.</A>
<LI>R. Piessens and W. Sweldens, <A
href="http://cm.bell-labs.com/who/wim/papers/quad.ps.gz">"Quadrature
Formulae and Asymptotic Error Expansion of Wavelet Approximations of
Smooth Functions."</A> An <A
href="http://cm.bell-labs.com/who/wim/papers/papers.html#quad">abstract</A>
is also available.
<LI>R. Piessens and W. Sweldens, <A
href="http://cm.bell-labs.com/who/wim/papers/quad.ps.gz">"Asymptotic
Error Expansion of Wavelet Approximations of Smooth Functions II."</A>
An <A
href="http://cm.bell-labs.com/who/wim/papers/papers.html#error">abstract</A>
is also available.
<LI>W. C. Shann, <A
href="ftp://dongpo.math.ncu.edu.tw/pub/shann/publications/9301.ps">"Quadratures
Involving Polynomials and Daubechies' Wavelets."</A>
<LI>W. Sweldens, <A
href="http://cm.bell-labs.com/who/wim/thesis">"Construction and
Appli
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -