⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pxa-gspi.c

📁 自制PDA系列之SPI接口无线局域网卡驱动(处理器S3C2410(PXA270的版本本人还没改好
💻 C
📖 第 1 页 / 共 4 页
字号:
//
// Copyright (c) Microsoft Corporation.  All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
/*++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.

Module Name:  

pxa-gspi.c

Abstract:  

Holds implementation of pcmcia serial driver interface.  This serial PDD
makes use of the ser16550 library to do most of the work.

Functions:


Notes: 


--*/
#include <windows.h>
#include <nkintr.h>
#include <ndis.h>

#include <types.h>
#include <memory.h>
#include <tchar.h>

#include <ceddk.h>
#include <s3c2440a.h>
#include <Devload.h>
#include <giisr.h>

#include "myintr.h"
#include "pxa-gpio.h"
#include "pxa-ssp.h"
#include "pxa-dma.h"
#include "pxa-gspi.h"
#include "sspioctl.h"

#define RETAILMSG(cond,printf_exp)  ((cond)?(NKDbgPrintfW printf_exp),1:0)
#define DEBUGMSG(cond,printf_exp)   RETAILMSG(1,printf_exp)


#ifdef DEBUG
	#define		GSPIMSG		DEBUGMSG
#else
	#define		GSPIMSG		RETAILMSG
#endif ///DEBUG

#define ONEBIT    0x1
///int		g_fmDnRdy = FALSE;

extern int		g_spi_dummy_clk_reg;
extern int		g_spi_dummy_clk_data;

#define DMA_DATASIZE   0   //0:data size=1, 1:data size=2,2:data size=4,

///volatile BULVERDE_DMA_REG		*pg_DMARegs;
static LPCTSTR pg_szActiveKey = _T("GSPI8385");

///============================================================================
/// Flags to control the displayed message
#define		ERRMSG		0			///Error Message. Displayed only error occurred
#define		FUNCTAG		0			///Display the message to show the function enter/exit
#define		TICKCNTMSG	0			///Tick count message
#define		PROGFLOW	0			///Display the message to show the program's running flow
#define		TX_FRAG	0			///Display the message whenever the fragmentation is needed in TX
#define		RX_FRAG	0			///Display the message whenever the fragmentation is needed in RX
#define		DMA_MSG		0			///Display the message for debuggin the DMA module
///============================================================================
#define ENTERFUNC()		GSPIMSG(FUNCTAG,(L"Enter %s\n", TEXT(__FUNCTION__)))
#define EXITFUNC(x)		GSPIMSG(FUNCTAG, (L"Exit %s (%d)\n", TEXT(__FUNCTION__), x))



#define	GSPI_MAX_REG_RETRY		3

static GSPI_STATUS setup_write_dma(PSSP_HARDWARE_CONTEXT pHC, int n);
static GSPI_STATUS setup_read_dma(PSSP_HARDWARE_CONTEXT pHC, int n);
///////////////////////////////////////////////////////////////////////////////
#if (SSPCTRLER == 1)
#define		SSPREG_PHY_BASE		BULVERDE_BASE_REG_PA_SSP1
#define		DMA_CHMAP_SSP_RX	DMA_CHMAP_SSP1_RX
#define		DMA_CHMAP_SSP_TX	DMA_CHMAP_SSP1_TX

#define		XLLP_DMAC_SSP_RX	XLLP_DMAC_SSP_1_RX
#define		XLLP_DMAC_SSP_TX	XLLP_DMAC_SSP_1_TX
#elif (SSPCTRLER == 2)
#define		SSPREG_PHY_BASE		BULVERDE_BASE_REG_PA_SSP2
#define		DMA_CHMAP_SSP_RX	DMA_CHMAP_SSP2_RX
#define		DMA_CHMAP_SSP_TX	DMA_CHMAP_SSP2_TX

#define		XLLP_DMAC_SSP_RX	XLLP_DMAC_SSP_2_RX
#define		XLLP_DMAC_SSP_TX	XLLP_DMAC_SSP_2_TX
#elif (SSPCTRLER == 3)
#define		SSPREG_PHY_BASE		BULVERDE_BASE_REG_PA_SSP3
#define		DMA_CHMAP_SSP_RX	DMA_CHMAP_SSP3_RX
#define		DMA_CHMAP_SSP_TX	DMA_CHMAP_SSP3_TX

#define		XLLP_DMAC_SSP_RX	XLLP_DMAC_SSP_3_RX
#define		XLLP_DMAC_SSP_TX	XLLP_DMAC_SSP_3_TX
#endif ///SSPCTRLER



///---------------------------------------------------------
///Signal Definition
///
#define		SSP_SCLK			23
#define		SSP_SFRM			24
#define		SSP_TX				25
#define		SSP_RX				26
#define		SSP_INTR			22

#define		SSPSCLK_ATTR		GPIO_ALT_FN_2_OUT
#define		SSPSFRM_ATTR		GPIO_OUT
#define		SSPTX_ATTR		GPIO_ALT_FN_2_OUT
#define		SSPRX_ATTR		GPIO_ALT_FN_1_IN
#define		SSPIRQ_ATTR		GPIO_IN


///Define DMA channel
#define		DMA_CH_READ			8
//#define		DMA_CH_RW			24  //for PXA 27X
#define		DMA_CH_RW			1   //for S2440

///#define		SSP_IRQNUM		22///Trial value from sdhc_mainstoneii.reg

#define		MVL_DEF_DRR			0x05
#define		MVL_DEF_DRP			0x0e
///CLK dividend
static int clkdiv = 0;

///---------------------------------------------------------
///Buffer defintion
///
#define PXA_SSP_BLKSZ_MAX				(1<<9)
#define PXA_SSP_BLOCKS_PER_BUFFER		(4)
#define PXA_SSP_IODATA_SIZE				(PXA_SSP_BLOCKS_PER_BUFFER * \
											PXA_SSP_BLKSZ_MAX)

///---------------------------------------------------------
///DMA ISR functions
///
/// Maximum waiting period (us)
#define		MAX_WAITus		    10000000   //dralee 100ms
///#define		MAX_WAITus		10000000   //dralee 100ms

// the dmcd struct is for documentation
struct dcmdRegBits 
{
    unsigned len         :13;
    unsigned rsv0        :1;   
    unsigned width       :2; 
    unsigned size        :2;
    unsigned endian      :1;
    unsigned flybyt      :1;
    unsigned flybys      :1;
    unsigned endirqen    :1;
    unsigned startirqen  :1;
    unsigned rsv1        :5;
    unsigned flowtrg     :1;
    unsigned flowsrc     :1;
    unsigned inctrgadd   :1;
    unsigned incsrcadd   :1;
};

union DMACmdReg// allow bitfields or masks
{
    volatile struct dcmdRegBits DcmdReg ;
    volatile DWORD DcmdDword;
} ;
//#define DEFAULT_IST_PRIORITY 50
#define DEFAULT_IST_PRIORITY 101
///#define DEFAULT_IST_PRIORITY 249
///#define SSP_DMA_INTR					(SYSINTR_FIRMWARE+1)
///#define SSP_DMA_INTR					(SYSINTR_FIRMWARE+1)


///static ULONG dma_irqr(PSSP_HARDWARE_CONTEXT	pHC);
///static ULONG dma_irqw(VOID* devid);
static BOOLEAN dma_ist(LPVOID param);
static BOOLEAN dev_ist(PSSP_HARDWARE_CONTEXT	pHC);

static GSPI_STATUS ssp_write_data_direct(DWORD hDC, PWORD data, WORD reg, WORD nword);
static GSPI_STATUS ssp_read_data_direct(DWORD hDC, WORD* data, WORD reg, WORD nword, WORD dummy_clk);


void putcToSoc(PSSP_HARDWARE_CONTEXT pHC, UCHAR c);
void EnableEINT(PSSP_HARDWARE_CONTEXT pHC);




///---------------------------------------------------------
//The function was modified from XllpOstDelayMicroSeconds() in XLLP\xllp_ost.c
//
// OST Tick constants
//
#define XLLP_OST_TICKS_MS    3250          // 1ms in ticks (3.25x10^6tick/sec * 1/1000sec/msec)
#define XLLP_OST_TICKS_US    3             // 1usec in ticks (3.25x10^6tick/sec * 1/1000000sec/usec)

//static void XllpOstDelayTicks(volatile BULVERDE_OST_REG * pOstRegs, DWORD ticks)
static void XllpOstDelayTicks(DWORD ticks)
{   
 
//	volatile DWORD    expireTime;
//	volatile DWORD    time=0;
/*

    DWORD i,j;

    for(j=0;j<ticks;j++)
    {
       for(i=0; i<20; i++ )
           time += ticks;  
    } 
          
    pOstRegs->oscr0 = 0; 
*/   
/*

	time = pOstRegs->oscr0;
	expireTime = time + ticks;

	//
	// Check if we wrapped on the expireTime
	// and delay first part until wrap
	//   
	if (expireTime < time) 
	{
		GSPIMSG(TICKCNTMSG,(L"%s, Timer is wrapped (expt, t)=(%xh, %xh)\n", TEXT(__FUNCTION__), expireTime, time));
		while (time <= pOstRegs->oscr0);

		GSPIMSG(TICKCNTMSG,(L"%s, timer is wrapped (leave)\n", TEXT(__FUNCTION__)));
	}
	while (pOstRegs->oscr0 <= expireTime);   

    //RETAILMSG(1,(L"oscr0 %x:%x,\n",expireTime,pOstRegs->oscr0));
*/
    return;
}

void putcToSoc(PSSP_HARDWARE_CONTEXT pHC, UCHAR c)
{

      while((pHC->pSSPRegs->SPSTA0 & 0x1)==0);	// wait while busy
      pHC->pSSPRegs->SPTDAT0 = c;	                // write left justified data
      while((pHC->pSSPRegs->SPSTA0 & 0x1)==0);	// wait while busy   	
      return ;

}


//blacksu mod
void udelay(DWORD ms)
{
}

/*
void udelay(volatile BULVERDE_OST_REG *pOstRegs, DWORD ms)
{
	DWORD		ticks;

	ticks = ms * XLLP_OST_TICKS_US * 3;  // approx. 3 ticks per microsecond. 
	//XllpOstDelayTicks (pOstRegs, ticks);
	XllpOstDelayTicks (ticks);
	return;
}
*/

///////////////////////////////////////////////////////////////////////////////
/// Core functions of the SSP interface accessing
/// 
static GSPI_STATUS setup_write_dma(PSSP_HARDWARE_CONTEXT pHC, int n)
{

	GSPI_STATUS		result = GSPI_SUCCESS;
	DWORD			dmaresult;
	MYDMAPARAM		*pDmaParam = &pHC->DMAParam[RWDMA_PARAM];
	//DWORD   TC;

// DMA mode, CLK enable, master mode, active high clock, format A, normal mode
pHC->pIntRegs->INTMSK&= ~(0x1<<18);//DMA1 service available
//pHC->pSSPRegs->SPCON0 = (0x10<<5)|(1<<4)|(1<<3)|(0<<2)|(0<<1)|(0<<0);
pHC->pSSPRegs->SPCON0 = (0x2<<5)|(1<<4)|(1<<3)|(0<<2)|(0<<1)|(0<<0);

//pHC->pDMARegs->DISRC1= (unsigned) (pHC->iodata);//Virtual address
pHC->pDMARegs->DISRC1= (unsigned) (pHC->phys_addr);//Phy address
pHC->pDMARegs->DISRCC1=(0<<1) | (0); //AHB(Memory), inc
pHC->pDMARegs->DIDST1=(unsigned)0x59000010;//SPI0 SPTDAT0 register(Physical Address)
pHC->pDMARegs->DIDSTC1=(1<<1) | (1);//APB(SPI), fixed
//Handshake Mode(31) , sync PCLK(30), TC intr(29), single TX(28), single service(27), 
//request source SPI(26..24), H/W request(23), off-reload(22), data size:byte(21..20), transfer count
pHC->pDMARegs->DCON1=(1<<31) |(0<<30)|(1<<29)|(0<<28)|(0<<27)|(3<<24)|(1<<23)|(1<<22)|(0<<20)|(n);
/*
TC=n;
if(DMA_DATASIZE==2)
     TC=(n+1)/2;
else if (DMA_DATASIZE==4)
       TC=(n+3)/4;	
pHC->pDMARegs->DCON1=(1<<31) |(0<<30)|(1<<29)|(0<<28)|(0<<27)|(3<<24)|(1<<23)|(1<<22)|(DMA_DATASIZE<<20)|(TC);
*/

#if (USE_DMAIRQ == 1)	
	ResetEvent(pDmaParam->dmaWaitObj);
#endif ///USE_DMAIRQ

pHC->pDMARegs->DMASKTRIG1=(0<<2)|(1<<1)|(0);//run, channel on, no s/w trigger

#if (USE_DMAIRQ == 1)
	dmaresult = WaitForSingleObject(pDmaParam->dmaWaitObj, (MAX_WAITus/1000));
	if (dmaresult == WAIT_TIMEOUT) {
		GSPIMSG(1, (TEXT("setup_write_dma WaitForSingleObject timeout  (%d)\n"), n));
		result = GSPI_TIMEOUT;
		goto funcFinal;
	}
	//GSPIMSG(1, (TEXT("good...\n")));
pHC->pDMARegs->DMASKTRIG1=(0<<2)|(0<<1)|(0);//run, channel off, no s/w trigger	
#endif

funcFinal:
	return result;
}
static GSPI_STATUS ssp_write_data_direct(DWORD hDC, PWORD data, WORD reg, WORD nword)
{
	int		result = GSPI_SUCCESS;	
	PSSP_HARDWARE_CONTEXT	pHC;
	int		nbyte;
	///crlo:length-fix ++
	int		fragnbyte, accnbyte;
	BOOLEAN	 needToWriteReg = TRUE;
	BOOLEAN		isFrag = FALSE;
	WORD temp;
	BYTE temp1;
		int		i;
	///crlo:length-fix --



#if (USE_DMA != 1)
	int		i;
	PWORD	dat;
#endif ///(USE_DMA != 1)
///GSPIMSG(1, (TEXT("w(%d)\n"), (nword*2)));
	
	ENTERFUNC();
	
	if (hDC == 0) {
		result = GSPI_INVALIDARGS;
		goto funcLeave;
	}
	pHC = (PSSP_HARDWARE_CONTEXT)hDC;

	EnterCriticalSection(&pHC->SSPCrit);


		
///n is a unit of WORD. Convert it to unit of BYTE
	    nbyte = nword * 2;
            reg |= 0x8000;
            
            
	    accnbyte = 0;
        
            

// poll mode, CLK enable, master mode, active high clock, format A, normal mode
pHC->pSSPRegs->SPCON0 = (0<<5)|(1<<4)|(1<<3)|(0<<2)|(0<<1)|(0<<0);
pHC->pSSPRegs->SPPIN0= ((0<<2) |(1<<1) |(0<<0));

pHC->pGPIORegs->GPGDAT &= ~(0x1 << 2);       //Set _SS signal to low (Slave Select)

#if (USE_DMA == 1)
// DMAl mode, CLK enable, master mode, active high clock, format A, normal mode
pHC->pIntRegs->INTMSK&= ~(0x1<<18);//DMA1 service available
pHC->pSSPRegs->SPCON0 = (0x2<<5)|(1<<4)|(1<<3)|(0<<2)|(0<<1)|(0<<0);
#endif


     
//*dat=temp;
//RETAILMSG(1,(L"%02d READ Value=(0x%x)\r\n", i,*dat));



	///crlo: Writing the data 
	while (1) {
		if ((nbyte - accnbyte) > (PXA_SSP_IODATA_SIZE)) {
			fragnbyte = PXA_SSP_IODATA_SIZE;
			GSPIMSG(1, (TEXT("Fragment Tx Data (now, exp)=(%d, %d)\n"), accnbyte, nbyte));
			isFrag = TRUE;
		} else {
			fragnbyte = nbyte - accnbyte;
		}
			
		memcpy(pHC->iodata,(BYTE*)&reg, 2);
		memcpy(pHC->iodata+2, (BYTE*)data, fragnbyte);
		
		
for(i=0;i<nword+1;i++)
{	
   temp1=*(pHC->iodata+2*i);	
   *(pHC->iodata+2*i)=*(pHC->iodata+2*i+1);
   *(pHC->iodata+2*i+1)=temp1;				
}


//GSPIMSG(1, (TEXT("ssp_write_data_direct-----0=%02X 1=%02X 2=%02X 3=%02X)\n"), *(pHC->iodata), *(pHC->iodata+1),*(pHC->iodata+2),*(pHC->iodata+3)));		
		
#if (USE_DMA == 1)
		///DMA mode
		result = setup_write_dma(pHC, fragnbyte+2);
		if (result != GSPI_SUCCESS) {
			GSPIMSG(1, (TEXT("Not successful after sending %d bytes.\n"), accnbyte));
			break;
		}
#else
		
		///CPU mode
	{
		
		dat = (PWORD)pHC->iodata;
		for (i=0 ; i<(fragnbyte/2) ; i++) 
		{
			
                //			pHC->pSSPRegs->base.ssdr = *dat;
               temp=*dat;
               
                while((pHC->pSSPRegs->SPSTA0 & 0x1)==0);	// wait while busy
             	pHC->pSSPRegs->SPTDAT0 = (UCHAR)(temp >> 8);	                // write 1st Byte
           //    RETAILMSG(1,(L"ssp_write_data_direct(): Reg 1st Byte=(0x%x)\n", (UCHAR)(temp >> 8)));
	        while((pHC->pSSPRegs->SPSTA0 & 0x1)==0);	// wait while busy

	        pHC->pSSPRegs->SPTDAT0 = (UCHAR)(temp & 0x00ff);	                // write 2nd Byte	
           //     RETAILMSG(1,(L"ssp_write_data_direct(): Reg 1st Byte=(0x%x)\n", (UCHAR)(temp & 0x00ff)));
	        while((pHC->pSSPRegs->SPSTA0 & 0x1)==0);	// wait while busy

			dat ++;
			
			
		}
		
	}
#endif ///USE_DMA
		
		data += (fragnbyte/2);			///type of Data is WORD
		accnbyte += fragnbyte;
		if (accnbyte == nbyte) {
			if (isFrag == TRUE) {
				GSPIMSG(1, (TEXT("Sending %d bytes complete\n"), accnbyte));
			}
			break;
		} else if (accnbyte > nbyte) {
			GSPIMSG(1, (TEXT("Invalid fragment, (exp, acc)=(%d, %d).\n"), nbyte, accnbyte));
			break;
		}
	}

// poll mode, CLK enable, master mode, active high clock, format A, normal mode
pHC->pSSPRegs->SPCON0 = (0<<5)|(1<<4)|(1<<3)|(0<<2)|(0<<1)|(0<<0);
pHC->pSSPRegs->SPPIN0= ((0<<2) |(1<<1) |(0<<0));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -