📄 text_fdct_mmx.c
字号:
// ---------- loop begin lp_mmx_fdct_row1: movd mm5, dword ptr [INP+12]; // mm5 = 7 6 punpcklwd mm5, dword ptr [INP+8] // mm5 = 5 7 4 6 movq mm2, mm5; // mm2 = 5 7 4 6 psrlq mm5, 32; // mm5 = _ _ 5 7 movq mm0, qword ptr [INP]; // mm0 = 3 2 1 0 punpcklwd mm5, mm2;// mm5 = 4 5 6 7 movq mm1, mm0; // mm1 = 3 2 1 0 paddsw mm0, mm5; // mm0 = [3+4, 2+5, 1+6, 0+7] (xt3, xt2, xt1, xt0) psubsw mm1, mm5; // mm1 = [3-4, 2-5, 1-6, 0-7] (xt7, xt6, xt5, xt4) movq mm2, mm0; // mm2 = [ xt3 xt2 xt1 xt0 ] //movq [ xt3xt2xt1xt0 ], mm0; // debugging //movq [ xt7xt6xt5xt4 ], mm1; // debugging punpcklwd mm0, mm1;// mm0 = [ xt5 xt1 xt4 xt0 ] punpckhwd mm2, mm1;// mm2 = [ xt7 xt3 xt6 xt2 ] movq mm1, mm2; // mm1 ;// shuffle bytes around// movq mm0, qword ptr [INP] ; 0 ; x3 x2 x1 x0// movq mm1, qword ptr [INP+8] ; 1 ; x7 x6 x5 x4 movq mm2, mm0 ; 2 ; x3 x2 x1 x0 movq mm3, qword ptr [TABLE] ; 3 ; w06 w04 w02 w00 punpcklwd mm0, mm1 ; x5 x1 x4 x0 movq mm5, mm0 ; 5 ; x5 x1 x4 x0 punpckldq mm0, mm0 ; x4 x0 x4 x0 [ xt2 xt0 xt2 xt0 ] movq mm4, qword ptr [TABLE+8] ; 4 ; w07 w05 w03 w01 punpckhwd mm2, mm1 ; 1 ; x7 x3 x6 x2 pmaddwd mm3, mm0 ; x4*w06+x0*w04 x4*w02+x0*w00 movq mm6, mm2 ; 6 ; x7 x3 x6 x2 movq mm1, qword ptr [TABLE+32] ; 1 ; w22 w20 w18 w16 punpckldq mm2, mm2 ; x6 x2 x6 x2 [ xt3 xt1 xt3 xt1 ] pmaddwd mm4, mm2 ; x6*w07+x2*w05 x6*w03+x2*w01 punpckhdq mm5, mm5 ; x5 x1 x5 x1 [ xt6 xt4 xt6 xt4 ] pmaddwd mm0, qword ptr [TABLE+16] ; x4*w14+x0*w12 x4*w10+x0*w08 punpckhdq mm6, mm6 ; x7 x3 x7 x3 [ xt7 xt5 xt7 xt5 ] movq mm7, qword ptr [TABLE+40] ; 7 ; w23 w21 w19 w17 pmaddwd mm1, mm5 ; x5*w22+x1*w20 x5*w18+x1*w16//mm3 = a1, a0 (y2,y0)//mm1 = b1, b0 (y3,y1)//mm0 = a3,a2 (y6,y4)//mm5 = b3,b2 (y7,y5) paddd mm3, qword ptr [round_frw_row] ; +rounder (y2,y0) pmaddwd mm7, mm6 ; x7*w23+x3*w21 x7*w19+x3*w17 pmaddwd mm2, qword ptr [TABLE+24] ; x6*w15+x2*w13 x6*w11+x2*w09 paddd mm3, mm4 ; 4 ; a1=sum(even1) a0=sum(even0) // now ( y2, y0) pmaddwd mm5, qword ptr [TABLE+48] ; x5*w30+x1*w28 x5*w26+x1*w24 ;// pmaddwd mm6, qword ptr [TABLE+56] ; x7*w31+x3*w29 x7*w27+x3*w25 paddd mm1, mm7 ; 7 ; b1=sum(odd1) b0=sum(odd0) // now ( y3, y1) paddd mm0, qword ptr [round_frw_row] ; +rounder (y6,y4) psrad mm3, SHIFT_FRW_ROW_CLIP1 ;// (y2, y0) paddd mm1, qword ptr [round_frw_row] ; +rounder (y3,y1) paddd mm0, mm2 ; 2 ; a3=sum(even3) a2=sum(even2) // now (y6, y4) paddd mm5, qword ptr [round_frw_row] ; +rounder (y7,y5) psrad mm1, SHIFT_FRW_ROW_CLIP1 ;// y1=a1+b1 y0=a0+b0 paddd mm5, mm6 ; 6 ; b3=sum(odd3) b2=sum(odd2) // now ( y7, y5) psrad mm0, SHIFT_FRW_ROW_CLIP1 ;//y3=a3+b3 y2=a2+b2 add OUT, 16; // increment row-output address by 1 row psrad mm5, SHIFT_FRW_ROW_CLIP1;// y4=a3-b3 y5=a2-b2 add INP, 16; // increment row-address by 1 row packssdw mm3, mm0 ;// 0 ; y6 y4 y2 y0, saturate {-32768,+32767} packssdw mm1, mm5 ;// 3 ; y7 y5 y3 y1, saturate {-32768,+32767} movq mm6, mm3; // mm0 = y6 y4 y2 y0 punpcklwd mm3, mm1; // y3 y2 y1 y0 sub edi, 0x01; // i = i - 1 punpckhwd mm6, mm1; // y7 y6 y5 y4 add TABLE,64; // increment to next table psraw mm3, SHIFT_FRW_ROW_CLIP2; // descale [y3 y2 y1 y0] to {-2048,+2047} psraw mm6, SHIFT_FRW_ROW_CLIP2; // descale [y7 y6 y5 y4] to {-2048,+2047} movq qword ptr [OUT-16], mm3 ; 1 ; save y3 y2 y1 y0 movq qword ptr [OUT-8], mm6 ; 7 ; save y7 y6 y5 y4 cmp edi, 0x00; jg lp_mmx_fdct_row1; // begin fdct processing on next row emms; } /* //////////////////////////////////////////////////////////////////////// // // DCT_8_FRW_COL(), equivalent c_code // // This C-code can be substituted for the same __asm block // // I found several *DISCREPANCIES* between the AP-922 C-listing // and actual corrected code (shown below). // //////////////////////////////////////////////////////////////////////// sptr = (short *) blk; optr = (short *) blk; // output will overwrite source data! for ( j = 0; j < 8; j=j+1 ) // dct_frw_col1 loop { // read source-data column #j into xt[0..7] xt[7] = sptr[7*8]; xt[6] = sptr[6*8]; xt[5] = sptr[5*8]; xt[4] = sptr[4*8]; xt[3] = sptr[3*8]; xt[2] = sptr[2*8]; xt[1] = sptr[1*8]; xt[0] = sptr[0*8]; #define LEFT_SHIFT( x ) ((x) << (SHIFT_FRW_COL) ) // left shift#define LEFT_SHIFT1( x ) ((x) << (SHIFT_FRW_COL+1) ) // left shift+1 t0 = LEFT_SHIFT ( xt[0] + xt[7] ); t1 = LEFT_SHIFT ( xt[1] + xt[6] ); t2 = LEFT_SHIFT ( xt[2] + xt[5] ); t3 = LEFT_SHIFT ( xt[3] + xt[4] ); t4 = LEFT_SHIFT ( xt[3] - xt[4] ); t5 = LEFT_SHIFT1( xt[2] - xt[5] ); // *** DISCREPANCY t6 = LEFT_SHIFT1( xt[1] - xt[6] ); // *** DISCREPANCY t7 = LEFT_SHIFT ( xt[0] - xt[7] ); tp03 = t0 + t3; tm03 = t0 - t3; tp12 = t1 + t2; tm12 = t1 - t2;// pmulhw/pmulhrw emulation macros #define X86_PMULHW( X ) ((short) ( ((int)X)>>16 )) //Intel MMX//#define X86_PMULHRW( X ) ((short) ( ( (((int)X)>>15)+1) >>1) ) //3DNow-MMX optr[0*8] = tp03 + tp12; optr[4*8] = tp03 - tp12; optr[2*8] = tm03 + X86_PMULHW( tm12 * _tg_2_16 ); optr[2*8] = optr[2*8] | _one_corr; // one_correction optr[6*8] = X86_PMULHW( tm03 * _tg_2_16 ) - tm12; optr[6*8] = optr[6*8] | _one_corr; // one_correction tp65 = X86_PMULHW( (t6 +t5 )*_ocos_4_16 ); // *** DISCREPANCY tp65 = tp65 | _one_corr; // one_correction tm65 = X86_PMULHW( (t6 -t5 )*_ocos_4_16 ); // *** DISCREPANCY tp765 = t7 + tp65; tm765 = t7 - tp65; tp465 = t4 + tm65; tm465 = t4 - tm65; optr[1*8] = tp765 + X86_PMULHW( tp465 * _tg_1_16 ); optr[1*8] = optr[1*8] | _one_corr; // one_correction optr[7*8] = X86_PMULHW( tp765 * _tg_1_16 ) - tp465;// optr[5*8] = X86_PMULHW( tm765 * _tg_3_16 ) + tm465; // *** DISCREPANCY // from pg8 of AP-922, ICONST = [ const*(2^16) + 0.5 ] // const * x = PMULHW( ICONST,x ) + x // The constant "tg_3_16" > 0.5, thus _tg_3_16 is encoded as tg_3_16-1.0 // optr[5*8] = X86_PMULHW( tm765 * ( tg_3_16 - 1.0 ) ) + tm465 // = [tm765*tg_3_16 - tm765] + tm465 // // optr[5*8] + tm765 = [ tm765*tg_3_16 ] + tm465 + tm765 // = [ tm765*tg_3_16 ] + tm465 <-- what we want optr[5*8] = X86_PMULHW( tm765 * _tg_3_16 ) + tm465 + tm765;// optr[3*8] = tm765 - X86_PMULHW( tm465 * _tg_3_16 ); // *** DISCREPANCY // The following operations must be performed in the shown order! // same trick (as shown for optr[5*8]) applies to optr[3*8] optr[3*8] = X86_PMULHW( tm465 * _tg_3_16 ) + tm465; optr[3*8] = tm765 - optr[3*8]; ++sptr; // increment source pointer +1 column ++optr; // increment output pointer +1 column } // end for ( j = 0 ..., end of C_equivalent code for forward_dct_col_1 //////////////////////////////////////////////////////////////////////// // // DCT8_FRW_ROW1(), equivalent c_code // // This C-code can be substituted for the same __asm block // For a derivation of this code, please read fdctmm32.doc //////////////////////////////////////////////////////////////////////// sptr = (short *) blk; optr = (short *) blk; // output will overwrite source data! tf = &tab_frw_01234567[ 0 ]; // fdct_row load table_forward_w for ( j = 0; j < 8; j=j+1 ) // dct_frw_row1 loop { // forward_dct_row input arithmetic + shuffle xt[3] = sptr[3] + sptr[4]; xt[2] = sptr[2] + sptr[5]; xt[1] = sptr[1] + sptr[6]; xt[0] = sptr[0] + sptr[7]; xt[7] = sptr[3] - sptr[4]; xt[6] = sptr[2] - sptr[5]; xt[5] = sptr[1] - sptr[6]; xt[4] = sptr[0] - sptr[7]; a3 = ( xt[0]*tf[10]+ xt[2]*tf[11]) + ( xt[1]*tf[14]+ xt[3]*tf[15]); a2 = ( xt[0]*tf[8] + xt[2]*tf[9] ) + ( xt[1]*tf[12]+ xt[3]*tf[13]); a1 = ( xt[0]*tf[2] + xt[2]*tf[3] ) + ( xt[1]*tf[6] + xt[3]*tf[7] ); a0 = ( xt[0]*tf[0] + xt[2]*tf[1] ) + ( xt[1]*tf[4] + xt[3]*tf[5] ); tf += 16; // increment table pointer b3 = ( xt[4]*tf[10]+ xt[6]*tf[11]) + ( xt[5]*tf[14]+ xt[7]*tf[15]); b2 = ( xt[4]*tf[8] + xt[6]*tf[9] ) + ( xt[5]*tf[12]+ xt[7]*tf[13]); b1 = ( xt[4]*tf[2] + xt[6]*tf[3] ) + ( xt[5]*tf[6] + xt[7]*tf[7] ); b0 = ( xt[4]*tf[0] + xt[6]*tf[1] ) + ( xt[5]*tf[4] + xt[7]*tf[5] ); tf += 16; // increment table pointer // apply rounding constants to scaled elements // note, in the MMX implementation, the shift&round is done *last.* // Here, the C-code applies the shifts 1st, then the clipping.#define SHIFT_AND_ROUND_FRW_ROW( x ) ( ((x)+RND_FRW_ROW) >> SHIFT_FRW_ROW ) a3 = SHIFT_AND_ROUND_FRW_ROW( a3 ); a2 = SHIFT_AND_ROUND_FRW_ROW( a2 ); a1 = SHIFT_AND_ROUND_FRW_ROW( a1 ); a0 = SHIFT_AND_ROUND_FRW_ROW( a0 ); b3 = SHIFT_AND_ROUND_FRW_ROW( b3 ); b2 = SHIFT_AND_ROUND_FRW_ROW( b2 ); b1 = SHIFT_AND_ROUND_FRW_ROW( b1 ); b0 = SHIFT_AND_ROUND_FRW_ROW( b0 ); // v1.01, clip output results to range {-2048, +2047} // In the MMX implementation, the "clipper" is integrated into // the shift&round operation (thanks to packssdw) a3 = (a3 > 2047) ? 2047 : a3; // ceiling @ +2047 a2 = (a2 > 2047) ? 2047 : a2; // ceiling @ +2047 a1 = (a1 > 2047) ? 2047 : a1; // ceiling @ +2047 a0 = (a0 > 2047) ? 2047 : a0; // ceiling @ +2047 b3 = (b3 > 2047) ? 2047 : b3; // ceiling @ +2047 b2 = (b2 > 2047) ? 2047 : b2; // ceiling @ +2047 b1 = (b1 > 2047) ? 2047 : b1; // ceiling @ +2047 b0 = (b0 > 2047) ? 2047 : b0; // ceiling @ +2047 a3 = (a3 <-2048) ? -2048 : a3; // floor @ -2048 a2 = (a2 <-2048) ? -2048 : a2; // floor @ -2048 a1 = (a1 <-2048) ? -2048 : a1; // floor @ -2048 a0 = (a0 <-2048) ? -2048 : a0; // floor @ -2048 b3 = (b3 <-2048) ? -2048 : b3; // floor @ -2048 b2 = (b2 <-2048) ? -2048 : b2; // floor @ -2048 b1 = (b1 <-2048) ? -2048 : b1; // floor @ -2048 b0 = (b0 <-2048) ? -2048 : b0; // floor @ -2048 // forward_dct_row, assign outputs optr[ 3 ] = b1; optr[ 2 ] = a1; optr[ 1 ] = b0; optr[ 0 ] = a0; optr[ 7 ] = b3; optr[ 6 ] = a3; optr[ 5 ] = b2; optr[ 4 ] = a2; sptr += 8; // increment source pointer +1 row optr += 8; // increment output pointer +1 row } // end for ( j = 0 ..., end of C_equivalent code for forward_dct_row_1 */ } // fdct_mm32( short *blk )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -