⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 newmatnl.cpp

📁 国外一个大牛人写的MEAN-SHIFT目标跟踪算法
💻 CPP
字号:
//$$ newmatnl.cpp         Non-linear optimisation// Copyright (C) 1993,4,5,6: R B Davies#define WANT_MATH#define WANT_STREAM#include "newmatap.h"#include "newmatnl.h"#ifdef use_namespacenamespace NEWMAT {#endifvoid FindMaximum2::Fit(ColumnVector& Theta, int n_it){   Tracer tr("FindMaximum2::Fit");   enum State {Start, Restart, Continue, Interpolate, Extrapolate,      Fail, Convergence};   State TheState = Start;   Real z,w,x,x2,g,l1,l2,l3,d1,d2=0,d3;   ColumnVector Theta1, Theta2, Theta3;   int np = Theta.Nrows();   ColumnVector H1(np), H3, HP(np), K, K1(np);   bool oorg, conv;   int counter = 0;   Theta1 = Theta; HP = 0.0; g = 0.0;   // This is really a set of gotos and labels, but they do not work   // correctly in AT&T C++ and Sun 4.01 C++.   for(;;)   {      switch (TheState)      {      case Start:	 tr.ReName("FindMaximum2::Fit/Start");	 Value(Theta1, true, l1, oorg);	 if (oorg) Throw(ProgramException("invalid starting value\n"));      case Restart:	 tr.ReName("FindMaximum2::Fit/ReStart");	 conv = NextPoint(H1, d1);	 if (conv) { TheState = Convergence; break; }	 if (counter++ > n_it) { TheState = Fail; break; }	 z = 1.0 / sqrt(d1);	 H3 = H1 * z; K = (H3 - HP) * g; HP = H3;	 g = 0.0;                     // de-activate to use curved projection	 if (g==0.0) K1 = 0.0; else K1 = K * 0.2 + K1 * 0.6;	 // (K - K1) * alpha + K1 * (1 - alpha)	 //     = K * alpha + K1 * (1 - 2 * alpha)	 K = K1 * d1; g = z;      case Continue:	 tr.ReName("FindMaximum2::Fit/Continue");	 Theta2 = Theta1 + H1 + K;	 Value(Theta2, false, l2, oorg);	 if (counter++ > n_it) { TheState = Fail; break; }	 if (oorg)	 {	    H1 *= 0.5; K *= 0.25; d1 *= 0.5; g *= 2.0;	    TheState =  Continue; break;	 }	 d2 = LastDerivative(H1 + K * 2.0);      case Interpolate:	 tr.ReName("FindMaximum2::Fit/Interpolate");	 z = d1 + d2 - 3.0 * (l2 - l1);	 w = z * z - d1 * d2;	 if (w < 0.0) { TheState = Extrapolate; break; }	 w = z + sqrt(w);	 if (1.5 * w + d1 < 0.0)	    { TheState = Extrapolate; break; }	 if (d2 > 0.0 && l2 > l1 && w > 0.0)	    { TheState = Extrapolate; break; }	 x = d1 / (w + d1); x2 = x * x; g /= x;	 Theta3 = Theta1 + H1 * x + K * x2;	 Value(Theta3, true, l3, oorg);	 if (counter++ > n_it) { TheState = Fail; break; }	 if (oorg)	 {	    if (x <= 1.0)	       { x *= 0.5; x2 = x*x; g *= 2.0; d1 *= x; H1 *= x; K *= x2; }	    else	    {	       x = 0.5 * (x-1.0); x2 = x*x; Theta1 = Theta2;	       H1 = (H1 + K * 2.0) * x;	       K *= x2; g = 0.0; d1 = x * d2; l1 = l2;	    }	    TheState = Continue; break;	 }	 if (l3 >= l1 && l3 >= l2)	    { Theta1 = Theta3; l1 = l3; TheState =  Restart; break; }	 d3 = LastDerivative(H1 + K * 2.0);	 if (l1 > l2)	    { H1 *= x; K *= x2; Theta2 = Theta3; d1 *= x; d2 = d3*x; }	 else	 {	    Theta1 = Theta2; Theta2 = Theta3;	    x -= 1.0; x2 = x*x; g = 0.0; H1 = (H1 + K * 2.0) * x;	    K *= x2; l1 = l2; l2 = l3; d1 = x*d2; d2 = x*d3;	    if (d1 <= 0.0) { TheState = Start; break; }	 }	 TheState =  Interpolate; break;      case Extrapolate:	 tr.ReName("FindMaximum2::Fit/Extrapolate");	 Theta1 = Theta2; g = 0.0; K *= 4.0; H1 = (H1 * 2.0 + K);	 d1 = 2.0 * d2; l1 = l2;	 TheState = Continue; break;      case Fail:	 Throw(ConvergenceException(Theta));      case Convergence:	 Theta = Theta1; return;      }   }}void NonLinearLeastSquares::Value   (const ColumnVector& Parameters, bool, Real& v, bool& oorg){   Tracer tr("NonLinearLeastSquares::Value");   Y.ReSize(n_obs); X.ReSize(n_obs,n_param);   // put the fitted values in Y, the derivatives in X.   Pred.Set(Parameters);   if (!Pred.IsValid()) { oorg=true; return; }   for (int i=1; i<=n_obs; i++)   {      Y(i) = Pred(i);      X.Row(i) = Pred.Derivatives();   }   if (!Pred.IsValid()) { oorg=true; return; }  // check afterwards as well   Y = *DataPointer - Y; Real ssq = Y.SumSquare();   errorvar =  ssq / (n_obs - n_param);   cout << "\n" << setw(15) << setprecision(10) << " " << errorvar;   Derivs = Y.t() * X;          // get the derivative and stash it   oorg = false; v = -0.5 * ssq;}bool NonLinearLeastSquares::NextPoint(ColumnVector& Adj, Real& test){   Tracer tr("NonLinearLeastSquares::NextPoint");   QRZ(X, U); QRZ(X, Y, M);     // do the QR decomposition   test = M.SumSquare();   cout << " " << setw(15) << setprecision(10)      << test << " " << Y.SumSquare() / (n_obs - n_param);   Adj = U.i() * M;   if (test < errorvar * criterion) return true;   else return false;}Real NonLinearLeastSquares::LastDerivative(const ColumnVector& H){ return (Derivs * H).AsScalar(); }void NonLinearLeastSquares::Fit(const ColumnVector& Data,   ColumnVector& Parameters){   Tracer tr("NonLinearLeastSquares::Fit");   n_param = Parameters.Nrows(); n_obs = Data.Nrows();   DataPointer = &Data;   FindMaximum2::Fit(Parameters, Lim);   cout << "\nConverged\n";}void NonLinearLeastSquares::MakeCovariance(){   if (Covariance.Nrows()==0)   {      UpperTriangularMatrix UI = U.i();      Covariance << UI * UI.t() * errorvar;      SE << Covariance;                 // get diagonals      for (int i = 1; i<=n_param; i++) SE(i) = sqrt(SE(i));   }}void NonLinearLeastSquares::GetStandardErrors(ColumnVector& SEX)   { MakeCovariance(); SEX = SE.AsColumn(); }void NonLinearLeastSquares::GetCorrelations(SymmetricMatrix& Corr)   { MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }void NonLinearLeastSquares::GetHatDiagonal(DiagonalMatrix& Hat) const{   Hat.ReSize(n_obs);   for (int i = 1; i<=n_obs; i++) Hat(i) = X.Row(i).SumSquare();}// the MLE_D_FI routinesvoid MLE_D_FI::Value   (const ColumnVector& Parameters, bool wg, Real& v, bool& oorg){   Tracer tr("MLE_D_FI::Value");   if (!LL.IsValid(Parameters,wg)) { oorg=true; return; }   v = LL.LogLikelihood();   if (!LL.IsValid()) { oorg=true; return; }     // check validity again   cout << "\n" << setw(20) << setprecision(10) << v;   oorg = false;   Derivs = LL.Derivatives();                    // Get derivatives}bool MLE_D_FI::NextPoint(ColumnVector& Adj, Real& test){   Tracer tr("MLE_D_FI::NextPoint");   SymmetricMatrix FI = LL.FI();   LT = Cholesky(FI);   ColumnVector Adj1 = LT.i() * Derivs;   Adj = LT.t().i() * Adj1;   test = SumSquare(Adj1);   cout << "   " << setw(20) << setprecision(10) << test;   return (test < Criterion);}Real MLE_D_FI::LastDerivative(const ColumnVector& H){ return (Derivs.t() * H).AsScalar(); }void MLE_D_FI::Fit(ColumnVector& Parameters){   Tracer tr("MLE_D_FI::Fit");   FindMaximum2::Fit(Parameters,Lim);   cout << "\nConverged\n";}  void MLE_D_FI::MakeCovariance(){   if (Covariance.Nrows()==0)   {      LowerTriangularMatrix LTI = LT.i();      Covariance << LTI.t() * LTI;      SE << Covariance;                // get diagonal      int n = Covariance.Nrows();      for (int i=1; i <= n; i++) SE(i) = sqrt(SE(i));   }}void MLE_D_FI::GetStandardErrors(ColumnVector& SEX){ MakeCovariance(); SEX = SE.AsColumn(); }   void MLE_D_FI::GetCorrelations(SymmetricMatrix& Corr){ MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }#ifdef use_namespace}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -