📄 ridt.c
字号:
into account */ taumax = MIN((time+half_WindowT_Length),(Signal.length-time-1+half_WindowT_Length)); taumax = MIN(taumax,(tfr.N_freq / 2 - 1)); taumax = MIN(taumax, half_WindowF_Length); /* initialization of the first local autocorrelation function */ if (Signal.is_complex == TRUE) { lacf_real[0] = Signal.real_part[time] * Signal.real_part[time] + Signal.imag_part[time] * Signal.imag_part[time] * WindowT[half_WindowT_Length]; /* the imag part is always zero because the imag part of any complex 'x * conjugate(x)' is zero */ lacf_imag[0] = 0.0 ; } else /* the signal is real-valued */ { lacf_real[0] = Signal.real_part[time] * Signal.real_part[time] * WindowT[half_WindowT_Length]; lacf_imag[0] = 0.0; } /* The signal is windowed around the current time */ for (tau = 1; tau <= taumax; tau++) { R1_real=0.0; R2_real=0.0; R1_imag=0.0; R2_imag=0.0; /* bound of mu in order to take into account the edges */ mumin=MIN(tau,half_WindowT_Length); mumin=MIN(mumin,(Signal.length-time-1-tau)); mumax=MIN(tau,half_WindowT_Length); mumax=MIN(mumax,time-tau); normK = 0.0; for(mu = -mumin ; mu <= mumax ; mu++) { RIDTKernel[half_WindowT_Length + mu] = (1.0 - ABS((double)mu/(double)tau)) *WindowT[half_WindowT_Length + mu]; /* computation of the current kernel norm */ normK = normK + RIDTKernel[half_WindowT_Length + mu]; } /* when the kernel is nearly null, no normalization */ if (normK<EPS) normK=1.0; for(mu = -mumin ; mu <= mumax ; mu++) { /* case of complex valued signal */ if (Signal.is_complex == TRUE) { R1_real = R1_real + (Signal.real_part[time+tau-mu] * Signal.real_part[time-tau-mu] + Signal.imag_part[time+tau-mu] * Signal.imag_part[time-tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R1_imag = R1_imag + (Signal.imag_part[time+tau-mu] * Signal.real_part[time-tau-mu] - Signal.real_part[time+tau-mu] * Signal.imag_part[time-tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R2_real = R2_real + (Signal.real_part[time-tau-mu] * Signal.real_part[time+tau-mu] + Signal.imag_part[time-tau-mu] * Signal.imag_part[time+tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R2_imag = R2_imag + (Signal.imag_part[time-tau-mu] * Signal.real_part[time+tau-mu] - Signal.real_part[time-tau-mu] * Signal.imag_part[time+tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; } else { R1_real = R1_real + (Signal.real_part[time+tau-mu] * Signal.real_part[time-tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R1_imag = 0.0; R2_real = R2_real + (Signal.real_part[time-tau-mu] * Signal.real_part[time+tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R2_imag = 0.0; } } lacf_real[tau] = R1_real * WindowF[half_WindowF_Length+tau]; lacf_imag[tau] = R1_imag * WindowF[half_WindowF_Length+tau]; lacf_real[tfr.N_freq-tau] = R2_real * WindowF[half_WindowF_Length-tau]; lacf_imag[tfr.N_freq-tau] = R2_imag * WindowF[half_WindowF_Length-tau]; } tau=floor(tfr.N_freq/2); if ((time<=Signal.length-tau-1)&(time>=tau)&(tau<=half_WindowF_Length)) { R1_real=0.0; R2_real=0.0; R1_imag=0.0; R2_imag=0.0; /* bound of mu in order to take into account the edges */ mumin=MIN(tau,half_WindowT_Length); mumin=MIN(mumin,(Signal.length-time-1-tau)); mumax=MIN(tau,half_WindowT_Length); mumax=MIN(mumax,time-tau); normK = 0.0; for(mu = -mumin ; mu <= mumax ; mu++) { RIDTKernel[half_WindowT_Length + mu] = (1.0 - ABS((double)mu/(double)tau)) *WindowT[half_WindowT_Length + mu]; /* computation of the current kernel norm */ normK = normK + RIDTKernel[half_WindowT_Length + mu]; } /* when the kernel is nearly null, no normalization */ if (normK<EPS) normK=1.0; for(mu = -mumin ; mu <= mumax ; mu++) { /* case of complex valued signal */ if (Signal.is_complex == TRUE) { R1_real = R1_real + (Signal.real_part[time+tau-mu] * Signal.real_part[time-tau-mu] + Signal.imag_part[time+tau-mu] * Signal.imag_part[time-tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R1_imag = R1_imag + (Signal.imag_part[time+tau-mu] * Signal.real_part[time-tau-mu] - Signal.real_part[time+tau-mu] * Signal.imag_part[time-tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R2_real = R2_real + (Signal.real_part[time-tau-mu] * Signal.real_part[time+tau-mu] + Signal.imag_part[time-tau-mu] * Signal.imag_part[time+tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R2_imag = R2_imag + (Signal.imag_part[time-tau-mu] * Signal.real_part[time+tau-mu] - Signal.real_part[time-tau-mu] * Signal.imag_part[time+tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; } else { R1_real = R1_real + (Signal.real_part[time+tau-mu] * Signal.real_part[time-tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R1_imag = 0.0; R2_real = R2_real + (Signal.real_part[time-tau-mu] * Signal.real_part[time+tau-mu]) * RIDTKernel[half_WindowT_Length+mu] / normK; R2_imag = 0.0; } } lacf_real[tau] = 0.5*(R1_real * WindowF[half_WindowF_Length+tau] +R2_real * WindowF[half_WindowF_Length-tau]); lacf_imag[tau] = 0.5*(R1_imag * WindowF[half_WindowF_Length+tau] +R2_imag * WindowF[half_WindowF_Length-tau]); } /* fft of the local autocorrelation function lacf */ fft (tfr.N_freq, Nfft, lacf_real, lacf_imag); /* the fft is put in the tfr matrix */ for (row = 0; row < tfr.N_freq; row++) { tfr.real_part[idx (row,column,tfr.N_freq)]= lacf_real[row]; lacf_real[row] = 0.0; lacf_imag[row] = 0.0; } } /*--------------------------------------------------------------------*/ /* free the memory used in this program */ /*--------------------------------------------------------------------*/ FREE (lacf_real); FREE (lacf_imag); FREE(RIDTKernel);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -