📄 mutual_mimo_deri_symm_barr.m
字号:
function [fgrad_mean, fhess_mean, fmutual_mean] = ...
mutual_mimo_deri_symm_barr(barr_t, M, N, H0, Rt_sqrt, gamma, Q_new, ...
NSAMPLE, ind1, ind2, I, Nx, Nr);
%------------------------------------------------------------
% Function to calculate the gradient and Hessian for general Hermitian
% covariance matrix case.
%
% Author: Mai Vu
% Date: 11/30/2003
% Revised: 04/12/2004
%------------------------------------------------------------
%------------------------------------------------------------
% INPUTS
% M: number of receive antennas
% N: number of transmit antennas
% H0: channel mean
% Rt_sqrt: square root of transmit correlation
% gamma: SNR
% Q_new: the previous transmit covariance matrix
% NSAMPLE: number of samples used in Monte-Carlo simulation
% ind1, ind2: reorganizing indexes
% I: identity matrix of size NxN
% Nx: number of complex unknowns
% Nr: number of real unknowns
%
% THE PROBLEM
%
% The unknown covariance matrix Q is a Hermitian matrix of size N^2. The
% number of complex unknowns is Nx = N*(N+1)/2, which is equivalent to a
% number of real unknowns Nr = N^2. The reason that Nx and Nr are inputs
% to the function is to speed up the run time as this function is called
% often, hence saving the time to calculate Nx and Nr each time the
% function is called.
%
% Objective function
% f = -E[logdet(I + SQ_new)] - logdet(Q_new)/barr_t
% where S = H'*H
% H = H0 + Hw*Rt_sqrt
% This function calculates the gradient and Hessian of f wrt the real and
% imaginary entries of Q.
%
% OUTPUTS
% fgrad_mean: average gradient
% fhess_mean: average Hessian
% fmutual_mean: average mutual information
%
%------------------------------------------------------------
% generate NSAMPLE of MxN Gaussian random matrices
H = (randn(M,N,NSAMPLE) + j*randn(M,N,NSAMPLE))/sqrt(2);
% create variables
fgrad = zeros(Nx,1);
fhess = zeros(Nx,Nx);
fmutual = 0;
% calculating the gradient and the Hessian by sample mean
% approximation. this is the most computationally intensive part.
for k=1:NSAMPLE
H_k = H0 + H(:,:,k)*Rt_sqrt;
S_k = gamma*H_k'*H_k;
P = I + S_k*Q_new;
% function value
fmutual = fmutual - real(log(det(P)));
Y = inv(P);
Z = Y*S_k;
Z12 = Z(ind1, ind2);
Z11 = Z(ind1, ind1);
Z22 = Z(ind2, ind2);
% gradient
fgradZ_2 = diag(Z12(N+1:Nr,N+1:Nr));
fgrad = fgrad - [diag(real(Z12)); imag(fgradZ_2)];
W12 = transpose(Z12).*Z12;
W11 = conj(Z22).*Z11;
% hessian
hess_11 = (real(W11)+real(W12));
hess_22 = (real(W11)-real(W12));
hess_12 = (imag(W12)-imag(W11));
hess_21 = (imag(W12)+imag(W11));
fhess = fhess + [hess_11 hess_12(:,N+1:Nr); hess_21(N+1:Nr,:) ...
hess_22(N+1:Nr,N+1:Nr)];
end
% add in the gradient, hessian and function values of the barrier part
R = inv(Q_new);
R12 = R(ind1, ind2);
R11 = R(ind1, ind1);
R22 = R(ind2, ind2);
fgradR_2 = diag(R12(N+1:Nr,N+1:Nr));
fgrad_mean = fgrad/NSAMPLE - ([diag(real(R12)); imag(fgradR_2)]/barr_t);
T12 = transpose(R12).*R12;
T11 = conj(R22).*R11;
hess_11 = (real(T11)+real(T12));
hess_22 = (real(T11)-real(T12));
hess_12 = (imag(T12)-imag(T11));
hess_21 = (imag(T12)+imag(T11));
fhess_mean = fhess/NSAMPLE + ([hess_11 hess_12(:,N+1:Nr); hess_21(N+1:Nr,:) ...
hess_22(N+1:Nr,N+1:Nr)]/barr_t);
fmutual_mean = fmutual/NSAMPLE - log(real(det(Q_new)))/barr_t;
% check that the hessian is non-negative
% D_temp = eig(fhess_mean);
% if any(D_temp < 0)
% disp('Error! Negative Hessian');
% D_temp
% end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -