📄 neuron.cpp
字号:
/*
Neural Network Simulator
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
(C) 2006 Jason Hunt
nulluser@gmail.gom
*/
#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include "console.h"
#include "neuron.h"
/* Compute values for all neurons */
void process_neurons( neuron_type *n )
{
// Point to first neuron in linked list
neuron_type *tn = n;
// Calculate next output for all neurons
while (tn != NULL)
{
double sum = 0;
// double prod = 1;
// Compute sums and products for sources
for (int j = 0; j < tn->num_sources; j++)
{
// Compute input transport function
double source_val = //tn->source_bias[j] +
tn->source_scaler[j] * *tn->sources[j];// *
// pow(*tn->sources[j], tn->source_power[j]);
// Adjust sum and product
sum += source_val;
// prod *= source_val;
}
// COmpute next values based on all weights and sources
tn->next_val = tanh(sum * tn->sum_weight +
// prod * tn->prod_weight +
// tn->derivative * tn->derv_weight +
// tn->integral* tn->intr_weight +
// tn->last_val * tn->last_weight +
tn->bias
);
// Compute discrete intergral
// tn->integral += (tn->out + tn->next_val) / 2.0;
// Compute discrete derivative
//tn->derivative = tn->next_val - tn->out;
tn = tn->next; // Advance to next neuron
}
// Start with first neuron
tn = n;
// Latch the new values for all of the neurons
//for (int i = 0; i < num_neurons; i++)
while (tn != NULL)
{
// tn->last_val = tn->out; // Save last value
tn->out = tn->next_val; // Set new value
tn = tn->next; // Point to next neuron
}
}
/* End of process neurons */
/* Return a point to a neuron be ID. Return NULL if not found */
neuron_type * get_neuron(neuron_type *n, unsigned long id)
{
// Test each neuron
while (n != NULL)
{
if (n->id == id) return(n); // ID match
n = n->next; // Next neuron in list
}
return(NULL); // Not found
}
/* End of get_neuron */
/* Connect a neuron to a double source */
void neuron_connect(neuron_type *n, unsigned id, double *source,
double bias, double scaler, int power)
{
if (source == NULL) return;
neuron_type *tn = get_neuron(n, id);
if (tn == NULL) return;
if (tn->num_sources >= MAX_SOURCES) return;
// First unused source slot
unsigned int s = tn->num_sources;
// Connect source pointer to the outout of n2
tn->sources[s] = source;
tn->source_bias[s] = bias;
tn->source_scaler[s] = scaler;
tn->source_power[s] = power;
tn->num_sources++;
}
/* End of connect */
/* Add a neuron to the linked list */
void add_neuron(neuron_type **n, unsigned long id,
double bias, double sum, double prod,
double intr, double derv, double feedback)
{
if (get_neuron(*n, id) != NULL)
{
write_console("Neuron ID in use\n");
return;
}
neuron_type *new_neuron = (neuron_type *) malloc(sizeof(neuron_type));
if (new_neuron == NULL)
{
write_console("Unable to get neuron memory \n");
while(1);
}
new_neuron->id = id;
new_neuron->sum_weight = sum;
new_neuron->prod_weight = prod;
new_neuron->derv_weight = derv;
new_neuron->intr_weight = intr;
new_neuron->feedback_weight = feedback;
new_neuron->bias = bias;
new_neuron->out = 0;
new_neuron->derivative = 0;
new_neuron->integral = 0;
new_neuron->last_val = 0;
new_neuron->num_sources = 0;
// Insert into list
neuron_type *tmp = *n; // Save origional root neuron
*n = new_neuron; // Point root to the new neuron
new_neuron->next = tmp; // point the new neuron to the origional root
}
/* End of add neuron */
/* Show entire neuron list */
void show_neuron(neuron_type *n, unsigned long id)
{
neuron_type *tn = get_neuron(n, id);
if (tn == NULL) return;
char buff[400];
sprintf(buff, " Neuron ID: %d\n", id);
write_console(buff);
for (int i = 0; i < tn->num_sources; i++)
{
sprintf(buff, " Source %8.5f", *tn->sources[i]);
write_console(buff);
sprintf(buff, " Bias: %8.5f", tn->source_bias[i]);
write_console(buff);
sprintf(buff, " Scaler: %8.5f", tn->source_scaler[i]);
write_console(buff);
sprintf(buff, " Power: %2d\n", tn->source_power[i]);
write_console(buff);
}
sprintf(buff, " Sum weight: %8.5f\n", tn->sum_weight);
write_console(buff);
sprintf(buff, " Prod weight: %8.5f\n", tn->prod_weight);
write_console(buff);
sprintf(buff, " Last weight: %8.5f\n", tn->last_weight);
write_console(buff);
sprintf(buff, " Bias: %8.5f\n", tn->bias);
write_console(buff);
sprintf(buff, " Out: %8.5f\n\n", tn->out);
write_console(buff);
}
/* End of show_neuron */
/* Free entire neuron list */
void free_neuron_list(neuron_type *n)
{
neuron_type *tmp;
while (n != NULL)
{
tmp = n->next;
free(n);
n = tmp;
}
}
/* End of free neuron list */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -