📄 cache.c
字号:
/* * net/sunrpc/cache.c * * Generic code for various authentication-related caches * used by sunrpc clients and servers. * * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> * * Released under terms in GPL version 2. See COPYING. * */#include <linux/types.h>#include <linux/fs.h>#include <linux/file.h>#include <linux/slab.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/kmod.h>#include <linux/list.h>#include <linux/module.h>#include <linux/ctype.h>#include <asm/uaccess.h>#include <linux/poll.h>#include <linux/seq_file.h>#include <linux/proc_fs.h>#include <linux/net.h>#include <linux/workqueue.h>#include <asm/ioctls.h>#include <linux/sunrpc/types.h>#include <linux/sunrpc/cache.h>#include <linux/sunrpc/stats.h>#define RPCDBG_FACILITY RPCDBG_CACHEvoid cache_init(struct cache_head *h){ time_t now = get_seconds(); h->next = NULL; h->flags = 0; atomic_set(&h->refcnt, 1); h->expiry_time = now + CACHE_NEW_EXPIRY; h->last_refresh = now;}static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);/* * This is the generic cache management routine for all * the authentication caches. * It checks the currency of a cache item and will (later) * initiate an upcall to fill it if needed. * * * Returns 0 if the cache_head can be used, or cache_puts it and returns * -EAGAIN if upcall is pending, * -ENOENT if cache entry was negative */int cache_check(struct cache_detail *detail, struct cache_head *h, struct cache_req *rqstp){ int rv; long refresh_age, age; /* First decide return status as best we can */ if (!test_bit(CACHE_VALID, &h->flags) || h->expiry_time < get_seconds()) rv = -EAGAIN; else if (detail->flush_time > h->last_refresh) rv = -EAGAIN; else { /* entry is valid */ if (test_bit(CACHE_NEGATIVE, &h->flags)) rv = -ENOENT; else rv = 0; } /* now see if we want to start an upcall */ refresh_age = (h->expiry_time - h->last_refresh); age = get_seconds() - h->last_refresh; if (rqstp == NULL) { if (rv == -EAGAIN) rv = -ENOENT; } else if (rv == -EAGAIN || age > refresh_age/2) { dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age); if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { switch (cache_make_upcall(detail, h)) { case -EINVAL: clear_bit(CACHE_PENDING, &h->flags); if (rv == -EAGAIN) { set_bit(CACHE_NEGATIVE, &h->flags); cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY); rv = -ENOENT; } break; case -EAGAIN: clear_bit(CACHE_PENDING, &h->flags); cache_revisit_request(h); break; } } } if (rv == -EAGAIN) cache_defer_req(rqstp, h); if (rv && h) detail->cache_put(h, detail); return rv;}static void queue_loose(struct cache_detail *detail, struct cache_head *ch);void cache_fresh(struct cache_detail *detail, struct cache_head *head, time_t expiry){ head->expiry_time = expiry; head->last_refresh = get_seconds(); if (!test_and_set_bit(CACHE_VALID, &head->flags)) cache_revisit_request(head); if (test_and_clear_bit(CACHE_PENDING, &head->flags)) queue_loose(detail, head);}/* * caches need to be periodically cleaned. * For this we maintain a list of cache_detail and * a current pointer into that list and into the table * for that entry. * * Each time clean_cache is called it finds the next non-empty entry * in the current table and walks the list in that entry * looking for entries that can be removed. * * An entry gets removed if: * - The expiry is before current time * - The last_refresh time is before the flush_time for that cache * * later we might drop old entries with non-NEVER expiry if that table * is getting 'full' for some definition of 'full' * * The question of "how often to scan a table" is an interesting one * and is answered in part by the use of the "nextcheck" field in the * cache_detail. * When a scan of a table begins, the nextcheck field is set to a time * that is well into the future. * While scanning, if an expiry time is found that is earlier than the * current nextcheck time, nextcheck is set to that expiry time. * If the flush_time is ever set to a time earlier than the nextcheck * time, the nextcheck time is then set to that flush_time. * * A table is then only scanned if the current time is at least * the nextcheck time. * */static LIST_HEAD(cache_list);static spinlock_t cache_list_lock = SPIN_LOCK_UNLOCKED;static struct cache_detail *current_detail;static int current_index;static struct file_operations cache_file_operations;static struct file_operations content_file_operations;static struct file_operations cache_flush_operations;static void do_cache_clean(void *data);static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);void cache_register(struct cache_detail *cd){ cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc); if (cd->proc_ent) { struct proc_dir_entry *p; cd->proc_ent->owner = THIS_MODULE; cd->channel_ent = cd->content_ent = NULL; p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR, cd->proc_ent); cd->flush_ent = p; if (p) { p->proc_fops = &cache_flush_operations; p->owner = THIS_MODULE; p->data = cd; } if (cd->cache_request || cd->cache_parse) { p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR, cd->proc_ent); cd->channel_ent = p; if (p) { p->proc_fops = &cache_file_operations; p->owner = THIS_MODULE; p->data = cd; } } if (cd->cache_show) { p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR, cd->proc_ent); cd->content_ent = p; if (p) { p->proc_fops = &content_file_operations; p->owner = THIS_MODULE; p->data = cd; } } } rwlock_init(&cd->hash_lock); INIT_LIST_HEAD(&cd->queue); spin_lock(&cache_list_lock); cd->nextcheck = 0; cd->entries = 0; atomic_set(&cd->readers, 0); cd->last_close = 0; cd->last_warn = -1; list_add(&cd->others, &cache_list); spin_unlock(&cache_list_lock); /* start the cleaning process */ schedule_work(&cache_cleaner);}int cache_unregister(struct cache_detail *cd){ cache_purge(cd); spin_lock(&cache_list_lock); write_lock(&cd->hash_lock); if (cd->entries || atomic_read(&cd->inuse)) { write_unlock(&cd->hash_lock); spin_unlock(&cache_list_lock); return -EBUSY; } if (current_detail == cd) current_detail = NULL; list_del_init(&cd->others); write_unlock(&cd->hash_lock); spin_unlock(&cache_list_lock); if (cd->proc_ent) { if (cd->flush_ent) remove_proc_entry("flush", cd->proc_ent); if (cd->channel_ent) remove_proc_entry("channel", cd->proc_ent); if (cd->content_ent) remove_proc_entry("content", cd->proc_ent); cd->proc_ent = NULL; remove_proc_entry(cd->name, proc_net_rpc); } if (list_empty(&cache_list)) { /* module must be being unloaded so its safe to kill the worker */ cancel_delayed_work(&cache_cleaner); flush_scheduled_work(); } return 0;}struct cache_detail *cache_find(char *name){ struct list_head *l; spin_lock(&cache_list_lock); list_for_each(l, &cache_list) { struct cache_detail *cd = list_entry(l, struct cache_detail, others); if (strcmp(cd->name, name)==0) { atomic_inc(&cd->inuse); spin_unlock(&cache_list_lock); return cd; } } spin_unlock(&cache_list_lock); return NULL;}/* cache_drop must be called on any cache returned by * cache_find, after it has been used */void cache_drop(struct cache_detail *detail){ atomic_dec(&detail->inuse);}/* clean cache tries to find something to clean * and cleans it. * It returns 1 if it cleaned something, * 0 if it didn't find anything this time * -1 if it fell off the end of the list. */int cache_clean(void){ int rv = 0; struct list_head *next; spin_lock(&cache_list_lock); /* find a suitable table if we don't already have one */ while (current_detail == NULL || current_index >= current_detail->hash_size) { if (current_detail) next = current_detail->others.next; else next = cache_list.next; if (next == &cache_list) { current_detail = NULL; spin_unlock(&cache_list_lock); return -1; } current_detail = list_entry(next, struct cache_detail, others); if (current_detail->nextcheck > get_seconds()) current_index = current_detail->hash_size; else { current_index = 0; current_detail->nextcheck = get_seconds()+30*60; } } /* find a non-empty bucket in the table */ while (current_detail && current_index < current_detail->hash_size && current_detail->hash_table[current_index] == NULL) current_index++; /* find a cleanable entry in the bucket and clean it, or set to next bucket */ if (current_detail && current_index < current_detail->hash_size) { struct cache_head *ch, **cp; struct cache_detail *d; write_lock(¤t_detail->hash_lock); /* Ok, now to clean this strand */ cp = & current_detail->hash_table[current_index]; ch = *cp; for (; ch; cp= & ch->next, ch= *cp) { if (current_detail->nextcheck > ch->expiry_time) current_detail->nextcheck = ch->expiry_time+1; if (ch->expiry_time >= get_seconds() && ch->last_refresh >= current_detail->flush_time ) continue; if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) queue_loose(current_detail, ch); if (!atomic_read(&ch->refcnt)) break; } if (ch) { cache_get(ch); clear_bit(CACHE_HASHED, &ch->flags); *cp = ch->next; ch->next = NULL; current_detail->entries--; rv = 1; } write_unlock(¤t_detail->hash_lock); d = current_detail; if (!ch) current_index ++; spin_unlock(&cache_list_lock); if (ch) d->cache_put(ch, d); } else spin_unlock(&cache_list_lock); return rv;}/* * We want to regularly clean the cache, so we need to schedule some work ... */static void do_cache_clean(void *data){ int delay = 5; if (cache_clean() == -1) delay = 30*HZ; if (list_empty(&cache_list)) delay = 0; if (delay) schedule_delayed_work(&cache_cleaner, delay);}/* * Clean all caches promptly. This just calls cache_clean * repeatedly until we are sure that every cache has had a chance to * be fully cleaned */void cache_flush(void){ while (cache_clean() != -1) cond_resched(); while (cache_clean() != -1) cond_resched();}void cache_purge(struct cache_detail *detail){ detail->flush_time = LONG_MAX; detail->nextcheck = get_seconds(); cache_flush(); detail->flush_time = 1;}/* * Deferral and Revisiting of Requests. * * If a cache lookup finds a pending entry, we * need to defer the request and revisit it later. * All deferred requests are stored in a hash table, * indexed by "struct cache_head *". * As it may be wasteful to store a whole request * structure, we allow the request to provide a * deferred form, which must contain a * 'struct cache_deferred_req' * This cache_deferred_req contains a method to allow * it to be revisited when cache info is available */#define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))#define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)#define DFR_MAX 300 /* ??? */spinlock_t cache_defer_lock = SPIN_LOCK_UNLOCKED;static LIST_HEAD(cache_defer_list);static struct list_head cache_defer_hash[DFR_HASHSIZE];static int cache_defer_cnt;void cache_defer_req(struct cache_req *req, struct cache_head *item){ struct cache_deferred_req *dreq; int hash = DFR_HASH(item); dreq = req->defer(req); if (dreq == NULL) return; dreq->item = item; dreq->recv_time = get_seconds(); spin_lock(&cache_defer_lock); list_add(&dreq->recent, &cache_defer_list); if (cache_defer_hash[hash].next == NULL) INIT_LIST_HEAD(&cache_defer_hash[hash]); list_add(&dreq->hash, &cache_defer_hash[hash]); /* it is in, now maybe clean up */ dreq = NULL; if (++cache_defer_cnt > DFR_MAX) { /* too much in the cache, randomly drop * first or last */ if (net_random()&1) dreq = list_entry(cache_defer_list.next, struct cache_deferred_req, recent); else dreq = list_entry(cache_defer_list.prev, struct cache_deferred_req, recent); list_del(&dreq->recent); list_del(&dreq->hash); cache_defer_cnt--; } spin_unlock(&cache_defer_lock); if (dreq) { /* there was one too many */ dreq->revisit(dreq, 1); } if (test_bit(CACHE_VALID, &item->flags)) { /* must have just been validated... */ cache_revisit_request(item); }}void cache_revisit_request(struct cache_head *item){ struct cache_deferred_req *dreq; struct list_head pending; struct list_head *lp; int hash = DFR_HASH(item); INIT_LIST_HEAD(&pending); spin_lock(&cache_defer_lock); lp = cache_defer_hash[hash].next; if (lp) { while (lp != &cache_defer_hash[hash]) { dreq = list_entry(lp, struct cache_deferred_req, hash); lp = lp->next; if (dreq->item == item) { list_del(&dreq->hash); list_move(&dreq->recent, &pending); cache_defer_cnt--; } } } spin_unlock(&cache_defer_lock); while (!list_empty(&pending)) { dreq = list_entry(pending.next, struct cache_deferred_req, recent); list_del_init(&dreq->recent); dreq->revisit(dreq, 0); }}void cache_clean_deferred(void *owner){ struct cache_deferred_req *dreq, *tmp; struct list_head pending; INIT_LIST_HEAD(&pending); spin_lock(&cache_defer_lock); list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { if (dreq->owner == owner) { list_del(&dreq->hash); list_move(&dreq->recent, &pending); cache_defer_cnt--; } } spin_unlock(&cache_defer_lock); while (!list_empty(&pending)) { dreq = list_entry(pending.next, struct cache_deferred_req, recent); list_del_init(&dreq->recent); dreq->revisit(dreq, 1); }}/* * communicate with user-space * * We have a magic /proc file - /proc/sunrpc/cache * On read, you get a full request, or block * On write, an update request is processed * Poll works if anything to read, and always allows write * * Implemented by linked list of requests. Each open file has * a ->private that also exists in this list. New request are added * to the end and may wakeup and preceding readers. * New readers are added to the head. If, on read, an item is found with * CACHE_UPCALLING clear, we free it from the list. * */static spinlock_t queue_lock = SPIN_LOCK_UNLOCKED;static DECLARE_MUTEX(queue_io_sem);struct cache_queue { struct list_head list; int reader; /* if 0, then request */};struct cache_request { struct cache_queue q; struct cache_head *item; char * buf; int len; int readers;};struct cache_reader { struct cache_queue q; int offset; /* if non-0, we have a refcnt on next request */};static ssize_tcache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos){ struct cache_reader *rp = filp->private_data; struct cache_request *rq; struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data; int err; if (count == 0) return 0; down(&queue_io_sem); /* protect against multiple concurrent * readers on this file */ again: spin_lock(&queue_lock); /* need to find next request */ while (rp->q.list.next != &cd->queue && list_entry(rp->q.list.next, struct cache_queue, list) ->reader) { struct list_head *next = rp->q.list.next; list_move(&rp->q.list, next); } if (rp->q.list.next == &cd->queue) { spin_unlock(&queue_lock); up(&queue_io_sem); if (rp->offset) BUG(); return 0; } rq = container_of(rp->q.list.next, struct cache_request, q.list); if (rq->q.reader) BUG();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -