📄 avc.c
字号:
/* * Implementation of the kernel access vector cache (AVC). * * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> * James Morris <jmorris@redhat.com> * * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, * as published by the Free Software Foundation. */#include <linux/types.h>#include <linux/stddef.h>#include <linux/kernel.h>#include <linux/slab.h>#include <linux/fs.h>#include <linux/dcache.h>#include <linux/init.h>#include <linux/skbuff.h>#include <net/sock.h>#include <linux/un.h>#include <net/af_unix.h>#include <linux/ip.h>#include <linux/audit.h>#include <linux/ipv6.h>#include <net/ipv6.h>#include "avc.h"#include "avc_ss.h"#ifdef CONFIG_AUDIT#include "class_to_string.h"#endif#include "common_perm_to_string.h"#include "av_inherit.h"#include "av_perm_to_string.h"#include "objsec.h"#define AVC_CACHE_SLOTS 512#define AVC_CACHE_MAXNODES 410struct avc_entry { u32 ssid; u32 tsid; u16 tclass; struct av_decision avd; int used; /* used recently */};struct avc_node { struct avc_entry ae; struct avc_node *next;};struct avc_cache { struct avc_node *slots[AVC_CACHE_SLOTS]; u32 lru_hint; /* LRU hint for reclaim scan */ u32 active_nodes; u32 latest_notif; /* latest revocation notification */};struct avc_callback_node { int (*callback) (u32 event, u32 ssid, u32 tsid, u16 tclass, u32 perms, u32 *out_retained); u32 events; u32 ssid; u32 tsid; u16 tclass; u32 perms; struct avc_callback_node *next;};static spinlock_t avc_lock = SPIN_LOCK_UNLOCKED;static struct avc_node *avc_node_freelist;static struct avc_cache avc_cache;static unsigned avc_cache_stats[AVC_NSTATS];static struct avc_callback_node *avc_callbacks;static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass){ return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);}#ifdef AVC_CACHE_STATSstatic inline void avc_cache_stats_incr(int type){ avc_cache_stats[type]++;}static inline void avc_cache_stats_add(int type, unsigned val){ avc_cache_stats[type] += val;}#elsestatic inline void avc_cache_stats_incr(int type){ }static inline void avc_cache_stats_add(int type, unsigned val){ }#endif/** * avc_dump_av - Display an access vector in human-readable form. * @tclass: target security class * @av: access vector */void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av){ char **common_pts = NULL; u32 common_base = 0; int i, i2, perm; if (av == 0) { audit_log_format(ab, " null"); return; } for (i = 0; i < ARRAY_SIZE(av_inherit); i++) { if (av_inherit[i].tclass == tclass) { common_pts = av_inherit[i].common_pts; common_base = av_inherit[i].common_base; break; } } audit_log_format(ab, " {"); i = 0; perm = 1; while (perm < common_base) { if (perm & av) audit_log_format(ab, " %s", common_pts[i]); i++; perm <<= 1; } while (i < sizeof(av) * 8) { if (perm & av) { for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) { if ((av_perm_to_string[i2].tclass == tclass) && (av_perm_to_string[i2].value == perm)) break; } if (i2 < ARRAY_SIZE(av_perm_to_string)) audit_log_format(ab, " %s", av_perm_to_string[i2].name); } i++; perm <<= 1; } audit_log_format(ab, " }");}/** * avc_dump_query - Display a SID pair and a class in human-readable form. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class */void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass){ int rc; char *scontext; u32 scontext_len; rc = security_sid_to_context(ssid, &scontext, &scontext_len); if (rc) audit_log_format(ab, "ssid=%d", ssid); else { audit_log_format(ab, "scontext=%s", scontext); kfree(scontext); } rc = security_sid_to_context(tsid, &scontext, &scontext_len); if (rc) audit_log_format(ab, " tsid=%d", tsid); else { audit_log_format(ab, " tcontext=%s", scontext); kfree(scontext); } audit_log_format(ab, " tclass=%s", class_to_string[tclass]);}/** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */void __init avc_init(void){ struct avc_node *new; int i; for (i = 0; i < AVC_CACHE_MAXNODES; i++) { new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) { printk(KERN_WARNING "avc: only able to allocate " "%d entries\n", i); break; } memset(new, 0, sizeof(*new)); new->next = avc_node_freelist; avc_node_freelist = new; } audit_log(current->audit_context, "AVC INITIALIZED\n");}#if 0static void avc_hash_eval(char *tag){ int i, chain_len, max_chain_len, slots_used; struct avc_node *node; unsigned long flags; spin_lock_irqsave(&avc_lock,flags); slots_used = 0; max_chain_len = 0; for (i = 0; i < AVC_CACHE_SLOTS; i++) { node = avc_cache.slots[i]; if (node) { slots_used++; chain_len = 0; while (node) { chain_len++; node = node->next; } if (chain_len > max_chain_len) max_chain_len = chain_len; } } spin_unlock_irqrestore(&avc_lock,flags); printk(KERN_INFO "\n"); printk(KERN_INFO "%s avc: %d entries and %d/%d buckets used, longest " "chain length %d\n", tag, avc_cache.active_nodes, slots_used, AVC_CACHE_SLOTS, max_chain_len);}#elsestatic inline void avc_hash_eval(char *tag){ }#endifstatic inline struct avc_node *avc_reclaim_node(void){ struct avc_node *prev, *cur; int hvalue, try; hvalue = avc_cache.lru_hint; for (try = 0; try < 2; try++) { do { prev = NULL; cur = avc_cache.slots[hvalue]; while (cur) { if (!cur->ae.used) goto found; cur->ae.used = 0; prev = cur; cur = cur->next; } hvalue = (hvalue + 1) & (AVC_CACHE_SLOTS - 1); } while (hvalue != avc_cache.lru_hint); } panic("avc_reclaim_node");found: avc_cache.lru_hint = hvalue; if (prev == NULL) avc_cache.slots[hvalue] = cur->next; else prev->next = cur->next; return cur;}static inline struct avc_node *avc_claim_node(u32 ssid, u32 tsid, u16 tclass){ struct avc_node *new; int hvalue; hvalue = avc_hash(ssid, tsid, tclass); if (avc_node_freelist) { new = avc_node_freelist; avc_node_freelist = avc_node_freelist->next; avc_cache.active_nodes++; } else { new = avc_reclaim_node(); if (!new) goto out; } new->ae.used = 1; new->ae.ssid = ssid; new->ae.tsid = tsid; new->ae.tclass = tclass; new->next = avc_cache.slots[hvalue]; avc_cache.slots[hvalue] = new;out: return new;}static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass, int *probes){ struct avc_node *cur; int hvalue; int tprobes = 1; hvalue = avc_hash(ssid, tsid, tclass); cur = avc_cache.slots[hvalue]; while (cur != NULL && (ssid != cur->ae.ssid || tclass != cur->ae.tclass || tsid != cur->ae.tsid)) { tprobes++; cur = cur->next; } if (cur == NULL) { /* cache miss */ goto out; } /* cache hit */ if (probes) *probes = tprobes; cur->ae.used = 1;out: return cur;}/** * avc_lookup - Look up an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @aeref: AVC entry reference * * Look up an AVC entry that is valid for the * @requested permissions between the SID pair * (@ssid, @tsid), interpreting the permissions * based on @tclass. If a valid AVC entry exists, * then this function updates @aeref to refer to the * entry and returns %0. Otherwise, this function * returns -%ENOENT. */int avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct avc_entry_ref *aeref){ struct avc_node *node; int probes, rc = 0; avc_cache_stats_incr(AVC_CAV_LOOKUPS); node = avc_search_node(ssid, tsid, tclass,&probes); if (node && ((node->ae.avd.decided & requested) == requested)) { avc_cache_stats_incr(AVC_CAV_HITS); avc_cache_stats_add(AVC_CAV_PROBES,probes); aeref->ae = &node->ae; goto out; } avc_cache_stats_incr(AVC_CAV_MISSES); rc = -ENOENT;out: return rc;}/** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @ae: AVC entry * @aeref: AVC entry reference * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call. If the * sequence number @ae->avd.seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, updates * @aeref to refer to the entry, and returns %0. * Otherwise, this function returns -%EAGAIN. */int avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae, struct avc_entry_ref *aeref){ struct avc_node *node; int rc = 0; if (ae->avd.seqno < avc_cache.latest_notif) { printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n", ae->avd.seqno, avc_cache.latest_notif); rc = -EAGAIN; goto out; } node = avc_claim_node(ssid, tsid, tclass); if (!node) { rc = -ENOMEM; goto out; } node->ae.avd.allowed = ae->avd.allowed; node->ae.avd.decided = ae->avd.decided; node->ae.avd.auditallow = ae->avd.auditallow; node->ae.avd.auditdeny = ae->avd.auditdeny; node->ae.avd.seqno = ae->avd.seqno; aeref->ae = &node->ae;out: return rc;}static inline void avc_print_ipv6_addr(struct audit_buffer *ab, struct in6_addr *addr, u16 port, char *name1, char *name2){ if (!ipv6_addr_any(addr)) audit_log_format(ab, " %s=%04x:%04x:%04x:%04x:%04x:" "%04x:%04x:%04x", name1, NIP6(*addr)); if (port) audit_log_format(ab, " %s=%d", name2, ntohs(port));}static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr, u16 port, char *name1, char *name2){ if (addr) audit_log_format(ab, " %s=%d.%d.%d.%d", name1, NIPQUAD(addr)); if (port) audit_log_format(ab, " %s=%d", name2, ntohs(port));}/** * avc_audit - Audit the granting or denial of permissions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * @result: result from avc_has_perm_noaudit * @a: auxiliary audit data * * Audit the granting or denial of permissions in accordance * with the policy. This function is typically called by * avc_has_perm() after a permission check, but can also be * called directly by callers who use avc_has_perm_noaudit() * in order to separate the permission check from the auditing. * For example, this separation is useful when the permission check must * be performed under a lock, to allow the lock to be released * before calling the auditing code. */void avc_audit(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, int result, struct avc_audit_data *a){ struct task_struct *tsk = current; struct inode *inode = NULL; u32 denied, audited; struct audit_buffer *ab; denied = requested & ~avd->allowed; if (denied) { audited = denied; if (!(audited & avd->auditdeny)) return; } else if (result) { audited = denied = requested; } else { audited = requested; if (!(audited & avd->auditallow)) return; } ab = audit_log_start(current->audit_context); if (!ab) return; /* audit_panic has been called */ audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted"); avc_dump_av(ab, tclass,audited); audit_log_format(ab, " for "); if (a && a->tsk) tsk = a->tsk; if (tsk && tsk->pid) { struct mm_struct *mm; struct vm_area_struct *vma; audit_log_format(ab, " pid=%d", tsk->pid); if (tsk == current) mm = current->mm; else mm = get_task_mm(tsk); if (mm) { if (down_read_trylock(&mm->mmap_sem)) { vma = mm->mmap; while (vma) { if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file) { audit_log_d_path(ab, "exe=", vma->vm_file->f_dentry, vma->vm_file->f_vfsmnt); break; } vma = vma->vm_next; } up_read(&mm->mmap_sem); } if (tsk != current) mmput(mm); } else { audit_log_format(ab, " comm=%s", tsk->comm); } } if (a) { switch (a->type) { case AVC_AUDIT_DATA_IPC: audit_log_format(ab, " key=%d", a->u.ipc_id); break; case AVC_AUDIT_DATA_CAP: audit_log_format(ab, " capability=%d", a->u.cap); break; case AVC_AUDIT_DATA_FS: if (a->u.fs.dentry) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -