📄 bitops.h
字号:
/* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $ * bitops.h: Bit string operations on the V9. * * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu) */#ifndef _SPARC64_BITOPS_H#define _SPARC64_BITOPS_H#include <linux/compiler.h>#include <asm/byteorder.h>extern long ___test_and_set_bit(unsigned long nr, volatile unsigned long *addr);extern long ___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);extern long ___test_and_change_bit(unsigned long nr, volatile unsigned long *addr);#define test_and_set_bit(nr,addr) ({___test_and_set_bit(nr,addr)!=0;})#define test_and_clear_bit(nr,addr) ({___test_and_clear_bit(nr,addr)!=0;})#define test_and_change_bit(nr,addr) ({___test_and_change_bit(nr,addr)!=0;})#define set_bit(nr,addr) ((void)___test_and_set_bit(nr,addr))#define clear_bit(nr,addr) ((void)___test_and_clear_bit(nr,addr))#define change_bit(nr,addr) ((void)___test_and_change_bit(nr,addr))/* "non-atomic" versions... */static __inline__ void __set_bit(int nr, volatile unsigned long *addr){ volatile unsigned long *m = addr + (nr >> 6); *m |= (1UL << (nr & 63));}static __inline__ void __clear_bit(int nr, volatile unsigned long *addr){ volatile unsigned long *m = addr + (nr >> 6); *m &= ~(1UL << (nr & 63));}static __inline__ void __change_bit(int nr, volatile unsigned long *addr){ volatile unsigned long *m = addr + (nr >> 6); *m ^= (1UL << (nr & 63));}static __inline__ int __test_and_set_bit(int nr, volatile unsigned long *addr){ volatile unsigned long *m = addr + (nr >> 6); long old = *m; long mask = (1UL << (nr & 63)); *m = (old | mask); return ((old & mask) != 0);}static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long *addr){ volatile unsigned long *m = addr + (nr >> 6); long old = *m; long mask = (1UL << (nr & 63)); *m = (old & ~mask); return ((old & mask) != 0);}static __inline__ int __test_and_change_bit(int nr, volatile unsigned long *addr){ volatile unsigned long *m = addr + (nr >> 6); long old = *m; long mask = (1UL << (nr & 63)); *m = (old ^ mask); return ((old & mask) != 0);}#define smp_mb__before_clear_bit() do { } while(0)#define smp_mb__after_clear_bit() do { } while(0)static __inline__ int test_bit(int nr, __const__ volatile unsigned long *addr){ return (1UL & ((addr)[nr >> 6] >> (nr & 63))) != 0UL;}/* The easy/cheese version for now. */static __inline__ unsigned long ffz(unsigned long word){ unsigned long result; result = 0; while(word & 1) { result++; word >>= 1; } return result;}/** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */static __inline__ unsigned long __ffs(unsigned long word){ unsigned long result = 0; while (!(word & 1UL)) { result++; word >>= 1; } return result;}/* * fls: find last bit set. */#define fls(x) generic_fls(x)#ifdef __KERNEL__/* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */static inline int sched_find_first_bit(unsigned long *b){ if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(((unsigned int)b[1]))) return __ffs(b[1]) + 64; if (b[1] >> 32) return __ffs(b[1] >> 32) + 96; return __ffs(b[2]) + 128;}/* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */static __inline__ int ffs(int x){ if (!x) return 0; return __ffs((unsigned long)x) + 1;}/* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */#ifdef ULTRA_HAS_POPULATION_COUNTstatic __inline__ unsigned int hweight64(unsigned long w){ unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w)); return res;}static __inline__ unsigned int hweight32(unsigned int w){ unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff)); return res;}static __inline__ unsigned int hweight16(unsigned int w){ unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff)); return res;}static __inline__ unsigned int hweight8(unsigned int w){ unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff)); return res;}#else#define hweight64(x) generic_hweight64(x)#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#endif#endif /* __KERNEL__ *//** * find_next_bit - find the next set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */extern unsigned long find_next_bit(const unsigned long *, unsigned long, unsigned long);/** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */#define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0)/* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */extern unsigned long find_next_zero_bit(unsigned long *, unsigned long, unsigned long);#define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0)#define test_and_set_le_bit(nr,addr) \ ({ ___test_and_set_bit((nr) ^ 0x38, (addr)) != 0; })#define test_and_clear_le_bit(nr,addr) \ ({ ___test_and_clear_bit((nr) ^ 0x38, (addr)) != 0; })static __inline__ int test_le_bit(int nr, __const__ unsigned long * addr){ int mask; __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0);}#define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0)extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsigned long);#ifdef __KERNEL__#define ext2_set_bit(nr,addr) \ test_and_set_le_bit((nr),(unsigned long *)(addr))#define ext2_set_bit_atomic(lock,nr,addr) \ test_and_set_le_bit((nr),(unsigned long *)(addr))#define ext2_clear_bit(nr,addr) \ test_and_clear_le_bit((nr),(unsigned long *)(addr))#define ext2_clear_bit_atomic(lock,nr,addr) \ test_and_clear_le_bit((nr),(unsigned long *)(addr))#define ext2_test_bit(nr,addr) \ test_le_bit((nr),(unsigned long *)(addr))#define ext2_find_first_zero_bit(addr, size) \ find_first_zero_le_bit((unsigned long *)(addr), (size))#define ext2_find_next_zero_bit(addr, size, off) \ find_next_zero_le_bit((unsigned long *)(addr), (size), (off))/* Bitmap functions for the minix filesystem. */#define minix_test_and_set_bit(nr,addr) \ test_and_set_bit((nr),(unsigned long *)(addr))#define minix_set_bit(nr,addr) \ set_bit((nr),(unsigned long *)(addr))#define minix_test_and_clear_bit(nr,addr) \ test_and_clear_bit((nr),(unsigned long *)(addr))#define minix_test_bit(nr,addr) \ test_bit((nr),(unsigned long *)(addr))#define minix_find_first_zero_bit(addr,size) \ find_first_zero_bit((unsigned long *)(addr),(size))#endif /* __KERNEL__ */#endif /* defined(_SPARC64_BITOPS_H) */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -