⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dm-snap.c

📁 Linux Kernel 2.6.9 for OMAP1710
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * dm-snapshot.c * * Copyright (C) 2001-2002 Sistina Software (UK) Limited. * * This file is released under the GPL. */#include <linux/blkdev.h>#include <linux/config.h>#include <linux/ctype.h>#include <linux/device-mapper.h>#include <linux/fs.h>#include <linux/init.h>#include <linux/kdev_t.h>#include <linux/list.h>#include <linux/mempool.h>#include <linux/module.h>#include <linux/slab.h>#include <linux/vmalloc.h>#include "dm-snap.h"#include "dm-bio-list.h"#include "kcopyd.h"/* * The percentage increment we will wake up users at */#define WAKE_UP_PERCENT 5/* * kcopyd priority of snapshot operations */#define SNAPSHOT_COPY_PRIORITY 2/* * Each snapshot reserves this many pages for io */#define SNAPSHOT_PAGES 256struct pending_exception {	struct exception e;	/*	 * Origin buffers waiting for this to complete are held	 * in a bio list	 */	struct bio_list origin_bios;	struct bio_list snapshot_bios;	/*	 * Other pending_exceptions that are processing this	 * chunk.  When this list is empty, we know we can	 * complete the origins.	 */	struct list_head siblings;	/* Pointer back to snapshot context */	struct dm_snapshot *snap;	/*	 * 1 indicates the exception has already been sent to	 * kcopyd.	 */	int started;};/* * Hash table mapping origin volumes to lists of snapshots and * a lock to protect it */static kmem_cache_t *exception_cache;static kmem_cache_t *pending_cache;static mempool_t *pending_pool;/* * One of these per registered origin, held in the snapshot_origins hash */struct origin {	/* The origin device */	struct block_device *bdev;	struct list_head hash_list;	/* List of snapshots for this origin */	struct list_head snapshots;};/* * Size of the hash table for origin volumes. If we make this * the size of the minors list then it should be nearly perfect */#define ORIGIN_HASH_SIZE 256#define ORIGIN_MASK      0xFFstatic struct list_head *_origins;static struct rw_semaphore _origins_lock;static int init_origin_hash(void){	int i;	_origins = kmalloc(ORIGIN_HASH_SIZE * sizeof(struct list_head),			   GFP_KERNEL);	if (!_origins) {		DMERR("Device mapper: Snapshot: unable to allocate memory");		return -ENOMEM;	}	for (i = 0; i < ORIGIN_HASH_SIZE; i++)		INIT_LIST_HEAD(_origins + i);	init_rwsem(&_origins_lock);	return 0;}static void exit_origin_hash(void){	kfree(_origins);}static inline unsigned int origin_hash(struct block_device *bdev){	return bdev->bd_dev & ORIGIN_MASK;}static struct origin *__lookup_origin(struct block_device *origin){	struct list_head *ol;	struct origin *o;	ol = &_origins[origin_hash(origin)];	list_for_each_entry (o, ol, hash_list)		if (bdev_equal(o->bdev, origin))			return o;	return NULL;}static void __insert_origin(struct origin *o){	struct list_head *sl = &_origins[origin_hash(o->bdev)];	list_add_tail(&o->hash_list, sl);}/* * Make a note of the snapshot and its origin so we can look it * up when the origin has a write on it. */static int register_snapshot(struct dm_snapshot *snap){	struct origin *o;	struct block_device *bdev = snap->origin->bdev;	down_write(&_origins_lock);	o = __lookup_origin(bdev);	if (!o) {		/* New origin */		o = kmalloc(sizeof(*o), GFP_KERNEL);		if (!o) {			up_write(&_origins_lock);			return -ENOMEM;		}		/* Initialise the struct */		INIT_LIST_HEAD(&o->snapshots);		o->bdev = bdev;		__insert_origin(o);	}	list_add_tail(&snap->list, &o->snapshots);	up_write(&_origins_lock);	return 0;}static void unregister_snapshot(struct dm_snapshot *s){	struct origin *o;	down_write(&_origins_lock);	o = __lookup_origin(s->origin->bdev);	list_del(&s->list);	if (list_empty(&o->snapshots)) {		list_del(&o->hash_list);		kfree(o);	}	up_write(&_origins_lock);}/* * Implementation of the exception hash tables. */static int init_exception_table(struct exception_table *et, uint32_t size){	unsigned int i;	et->hash_mask = size - 1;	et->table = dm_vcalloc(size, sizeof(struct list_head));	if (!et->table)		return -ENOMEM;	for (i = 0; i < size; i++)		INIT_LIST_HEAD(et->table + i);	return 0;}static void exit_exception_table(struct exception_table *et, kmem_cache_t *mem){	struct list_head *slot;	struct exception *ex, *next;	int i, size;	size = et->hash_mask + 1;	for (i = 0; i < size; i++) {		slot = et->table + i;		list_for_each_entry_safe (ex, next, slot, hash_list)			kmem_cache_free(mem, ex);	}	vfree(et->table);}static inline uint32_t exception_hash(struct exception_table *et, chunk_t chunk){	return chunk & et->hash_mask;}static void insert_exception(struct exception_table *eh, struct exception *e){	struct list_head *l = &eh->table[exception_hash(eh, e->old_chunk)];	list_add(&e->hash_list, l);}static inline void remove_exception(struct exception *e){	list_del(&e->hash_list);}/* * Return the exception data for a sector, or NULL if not * remapped. */static struct exception *lookup_exception(struct exception_table *et,					  chunk_t chunk){	struct list_head *slot;	struct exception *e;	slot = &et->table[exception_hash(et, chunk)];	list_for_each_entry (e, slot, hash_list)		if (e->old_chunk == chunk)			return e;	return NULL;}static inline struct exception *alloc_exception(void){	struct exception *e;	e = kmem_cache_alloc(exception_cache, GFP_NOIO);	if (!e)		e = kmem_cache_alloc(exception_cache, GFP_ATOMIC);	return e;}static inline void free_exception(struct exception *e){	kmem_cache_free(exception_cache, e);}static inline struct pending_exception *alloc_pending_exception(void){	return mempool_alloc(pending_pool, GFP_NOIO);}static inline void free_pending_exception(struct pending_exception *pe){	mempool_free(pe, pending_pool);}int dm_add_exception(struct dm_snapshot *s, chunk_t old, chunk_t new){	struct exception *e;	e = alloc_exception();	if (!e)		return -ENOMEM;	e->old_chunk = old;	e->new_chunk = new;	insert_exception(&s->complete, e);	return 0;}/* * Hard coded magic. */static int calc_max_buckets(void){	/* use a fixed size of 2MB */	unsigned long mem = 2 * 1024 * 1024;	mem /= sizeof(struct list_head);	return mem;}/* * Rounds a number down to a power of 2. */static inline uint32_t round_down(uint32_t n){	while (n & (n - 1))		n &= (n - 1);	return n;}/* * Allocate room for a suitable hash table. */static int init_hash_tables(struct dm_snapshot *s){	sector_t hash_size, cow_dev_size, origin_dev_size, max_buckets;	/*	 * Calculate based on the size of the original volume or	 * the COW volume...	 */	cow_dev_size = get_dev_size(s->cow->bdev);	origin_dev_size = get_dev_size(s->origin->bdev);	max_buckets = calc_max_buckets();	hash_size = min(origin_dev_size, cow_dev_size) >> s->chunk_shift;	hash_size = min(hash_size, max_buckets);	/* Round it down to a power of 2 */	hash_size = round_down(hash_size);	if (init_exception_table(&s->complete, hash_size))		return -ENOMEM;	/*	 * Allocate hash table for in-flight exceptions	 * Make this smaller than the real hash table	 */	hash_size >>= 3;	if (hash_size < 64)		hash_size = 64;	if (init_exception_table(&s->pending, hash_size)) {		exit_exception_table(&s->complete, exception_cache);		return -ENOMEM;	}	return 0;}/* * Round a number up to the nearest 'size' boundary.  size must * be a power of 2. */static inline ulong round_up(ulong n, ulong size){	size--;	return (n + size) & ~size;}/* * Construct a snapshot mapping: <origin_dev> <COW-dev> <p/n> <chunk-size> */static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv){	struct dm_snapshot *s;	unsigned long chunk_size;	int r = -EINVAL;	char persistent;	char *origin_path;	char *cow_path;	char *value;	int blocksize;	if (argc < 4) {		ti->error = "dm-snapshot: requires exactly 4 arguments";		r = -EINVAL;		goto bad1;	}	origin_path = argv[0];	cow_path = argv[1];	persistent = toupper(*argv[2]);	if (persistent != 'P' && persistent != 'N') {		ti->error = "Persistent flag is not P or N";		r = -EINVAL;		goto bad1;	}	chunk_size = simple_strtoul(argv[3], &value, 10);	if (chunk_size == 0 || value == NULL) {		ti->error = "Invalid chunk size";		r = -EINVAL;		goto bad1;	}	s = kmalloc(sizeof(*s), GFP_KERNEL);	if (s == NULL) {		ti->error = "Cannot allocate snapshot context private "		    "structure";		r = -ENOMEM;		goto bad1;	}	r = dm_get_device(ti, origin_path, 0, ti->len, FMODE_READ, &s->origin);	if (r) {		ti->error = "Cannot get origin device";		goto bad2;	}	r = dm_get_device(ti, cow_path, 0, 0,			  FMODE_READ | FMODE_WRITE, &s->cow);	if (r) {		dm_put_device(ti, s->origin);		ti->error = "Cannot get COW device";		goto bad2;	}	/*	 * Chunk size must be multiple of page size.  Silently	 * round up if it's not.	 */	chunk_size = round_up(chunk_size, PAGE_SIZE >> 9);	/* Validate the chunk size against the device block size */	blocksize = s->cow->bdev->bd_disk->queue->hardsect_size;	if (chunk_size % (blocksize >> 9)) {		ti->error = "Chunk size is not a multiple of device blocksize";		r = -EINVAL;		goto bad3;	}	/* Check chunk_size is a power of 2 */	if (chunk_size & (chunk_size - 1)) {		ti->error = "Chunk size is not a power of 2";		r = -EINVAL;		goto bad3;	}	s->chunk_size = chunk_size;	s->chunk_mask = chunk_size - 1;	s->type = persistent;	s->chunk_shift = ffs(chunk_size) - 1;	s->valid = 1;	s->have_metadata = 0;	s->last_percent = 0;	init_rwsem(&s->lock);	s->table = ti->table;	/* Allocate hash table for COW data */	if (init_hash_tables(s)) {		ti->error = "Unable to allocate hash table space";		r = -ENOMEM;		goto bad3;	}	/*	 * Check the persistent flag - done here because we need the iobuf	 * to check the LV header	 */	s->store.snap = s;	if (persistent == 'P')		r = dm_create_persistent(&s->store, chunk_size);	else		r = dm_create_transient(&s->store, s, blocksize);	if (r) {		ti->error = "Couldn't create exception store";		r = -EINVAL;		goto bad4;	}	r = kcopyd_client_create(SNAPSHOT_PAGES, &s->kcopyd_client);	if (r) {		ti->error = "Could not create kcopyd client";		goto bad5;	}	/* Add snapshot to the list of snapshots for this origin */	if (register_snapshot(s)) {		r = -EINVAL;		ti->error = "Cannot register snapshot origin";		goto bad6;	}	ti->private = s;	ti->split_io = chunk_size;	return 0; bad6:	kcopyd_client_destroy(s->kcopyd_client); bad5:	s->store.destroy(&s->store); bad4:	exit_exception_table(&s->pending, pending_cache);	exit_exception_table(&s->complete, exception_cache); bad3:	dm_put_device(ti, s->cow);	dm_put_device(ti, s->origin); bad2:	kfree(s); bad1:	return r;}static void snapshot_dtr(struct dm_target *ti){	struct dm_snapshot *s = (struct dm_snapshot *) ti->private;	unregister_snapshot(s);	exit_exception_table(&s->pending, pending_cache);	exit_exception_table(&s->complete, exception_cache);	/* Deallocate memory used */	s->store.destroy(&s->store);	dm_put_device(ti, s->origin);	dm_put_device(ti, s->cow);	kcopyd_client_destroy(s->kcopyd_client);	kfree(s);}/* * Flush a list of buffers. */static void flush_bios(struct bio *bio){	struct bio *n;	while (bio) {		n = bio->bi_next;		bio->bi_next = NULL;		generic_make_request(bio);		bio = n;	}}/* * Error a list of buffers. */static void error_bios(struct bio *bio){	struct bio *n;	while (bio) {		n = bio->bi_next;		bio->bi_next = NULL;		bio_io_error(bio, bio->bi_size);		bio = n;	}}static struct bio *__flush_bios(struct pending_exception *pe){	struct pending_exception *sibling;	if (list_empty(&pe->siblings))		return bio_list_get(&pe->origin_bios);	sibling = list_entry(pe->siblings.next,			     struct pending_exception, siblings);	list_del(&pe->siblings);	/* This is fine as long as kcopyd is single-threaded. If kcopyd	 * becomes multi-threaded, we'll need some locking here.	 */	bio_list_merge(&sibling->origin_bios, &pe->origin_bios);	return NULL;}static void pending_complete(struct pending_exception *pe, int success){	struct exception *e;	struct dm_snapshot *s = pe->snap;	struct bio *flush = NULL;	if (success) {		e = alloc_exception();		if (!e) {			DMWARN("Unable to allocate exception.");			down_write(&s->lock);			s->store.drop_snapshot(&s->store);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -