⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 atp.c

📁 Linux Kernel 2.6.9 for OMAP1710
💻 C
📖 第 1 页 / 共 2 页
字号:
/* atp.c: Attached (pocket) ethernet adapter driver for linux. *//*	This is a driver for commonly OEM pocket (parallel port)	ethernet adapters based on the Realtek RTL8002 and RTL8012 chips.	Written 1993-2000 by Donald Becker.	This software may be used and distributed according to the terms of	the GNU General Public License (GPL), incorporated herein by reference.	Drivers based on or derived from this code fall under the GPL and must	retain the authorship, copyright and license notice.  This file is not	a complete program and may only be used when the entire operating	system is licensed under the GPL.	Copyright 1993 United States Government as represented by the Director,	National Security Agency.  Copyright 1994-2000 retained by the original	author, Donald Becker. The timer-based reset code was supplied in 1995	by Bill Carlson, wwc@super.org.	The author may be reached as becker@scyld.com, or C/O	Scyld Computing Corporation	410 Severn Ave., Suite 210	Annapolis MD 21403	Support information and updates available at	http://www.scyld.com/network/atp.html	Modular support/softnet added by Alan Cox.	_bit abuse fixed up by Alan Cox*/static const char versionA[] ="atp.c:v1.09=ac 2002/10/01 Donald Becker <becker@scyld.com>\n";static const char versionB[] ="  http://www.scyld.com/network/atp.html\n";/* The user-configurable values.   These may be modified when a driver module is loaded.*/static int debug = 1; 			/* 1 normal messages, 0 quiet .. 7 verbose. */#define net_debug debug/* Maximum events (Rx packets, etc.) to handle at each interrupt. */static int max_interrupt_work = 15;#define NUM_UNITS 2/* The standard set of ISA module parameters. */static int io[NUM_UNITS];static int irq[NUM_UNITS];static int xcvr[NUM_UNITS]; 			/* The data transfer mode. *//* Operational parameters that are set at compile time. *//* Time in jiffies before concluding the transmitter is hung. */#define TX_TIMEOUT  (400*HZ/1000)/*	This file is a device driver for the RealTek (aka AT-Lan-Tec) pocket	ethernet adapter.  This is a common low-cost OEM pocket ethernet	adapter, sold under many names.  Sources:	This driver was written from the packet driver assembly code provided by	Vincent Bono of AT-Lan-Tec.	 Ever try to figure out how a complicated	device works just from the assembly code?  It ain't pretty.  The following	description is written based on guesses and writing lots of special-purpose	code to test my theorized operation.	In 1997 Realtek made available the documentation for the second generation	RTL8012 chip, which has lead to several driver improvements.	  http://www.realtek.com.tw/cn/cn.html					Theory of Operation	The RTL8002 adapter seems to be built around a custom spin of the SEEQ	controller core.  It probably has a 16K or 64K internal packet buffer, of	which the first 4K is devoted to transmit and the rest to receive.	The controller maintains the queue of received packet and the packet buffer	access pointer internally, with only 'reset to beginning' and 'skip to next	packet' commands visible.  The transmit packet queue holds two (or more?)	packets: both 'retransmit this packet' (due to collision) and 'transmit next	packet' commands must be started by hand.	The station address is stored in a standard bit-serial EEPROM which must be	read (ughh) by the device driver.  (Provisions have been made for	substituting a 74S288 PROM, but I haven't gotten reports of any models	using it.)  Unlike built-in devices, a pocket adapter can temporarily lose	power without indication to the device driver.  The major effect is that	the station address, receive filter (promiscuous, etc.) and transceiver	must be reset.	The controller itself has 16 registers, some of which use only the lower	bits.  The registers are read and written 4 bits at a time.  The four bit	register address is presented on the data lines along with a few additional	timing and control bits.  The data is then read from status port or written	to the data port.	Correction: the controller has two banks of 16 registers.  The second	bank contains only the multicast filter table (now used) and the EEPROM	access registers.	Since the bulk data transfer of the actual packets through the slow	parallel port dominates the driver's running time, four distinct data	(non-register) transfer modes are provided by the adapter, two in each	direction.  In the first mode timing for the nibble transfers is	provided through the data port.  In the second mode the same timing is	provided through the control port.  In either case the data is read from	the status port and written to the data port, just as it is accessing	registers.	In addition to the basic data transfer methods, several more are modes are	created by adding some delay by doing multiple reads of the data to allow	it to stabilize.  This delay seems to be needed on most machines.	The data transfer mode is stored in the 'dev->if_port' field.  Its default	value is '4'.  It may be overridden at boot-time using the third parameter	to the "ether=..." initialization.	The header file <atp.h> provides inline functions that encapsulate the	register and data access methods.  These functions are hand-tuned to	generate reasonable object code.  This header file also documents my	interpretations of the device registers.*/#include <linux/kernel.h>#include <linux/module.h>#include <linux/types.h>#include <linux/fcntl.h>#include <linux/interrupt.h>#include <linux/ioport.h>#include <linux/in.h>#include <linux/slab.h>#include <linux/string.h>#include <linux/errno.h>#include <linux/init.h>#include <linux/crc32.h>#include <linux/netdevice.h>#include <linux/etherdevice.h>#include <linux/skbuff.h>#include <linux/spinlock.h>#include <linux/delay.h>#include <asm/system.h>#include <asm/bitops.h>#include <asm/io.h>#include <asm/dma.h>#include "atp.h"MODULE_AUTHOR("Donald Becker <becker@scyld.com>");MODULE_DESCRIPTION("RealTek RTL8002/8012 parallel port Ethernet driver");MODULE_LICENSE("GPL");MODULE_PARM(max_interrupt_work, "i");MODULE_PARM(debug, "i");MODULE_PARM(io, "1-" __MODULE_STRING(NUM_UNITS) "i");MODULE_PARM(irq, "1-" __MODULE_STRING(NUM_UNITS) "i");MODULE_PARM(xcvr, "1-" __MODULE_STRING(NUM_UNITS) "i");MODULE_PARM_DESC(max_interrupt_work, "ATP maximum events handled per interrupt");MODULE_PARM_DESC(debug, "ATP debug level (0-7)");MODULE_PARM_DESC(io, "ATP I/O base address(es)");MODULE_PARM_DESC(irq, "ATP IRQ number(s)");MODULE_PARM_DESC(xcvr, "ATP transceiver(s) (0=internal, 1=external)");/* The number of low I/O ports used by the ethercard. */#define ETHERCARD_TOTAL_SIZE	3/* Sequence to switch an 8012 from printer mux to ethernet mode. */static char mux_8012[] = { 0xff, 0xf7, 0xff, 0xfb, 0xf3, 0xfb, 0xff, 0xf7,};struct net_local {    spinlock_t lock;    struct net_device *next_module;    struct net_device_stats stats;    struct timer_list timer;	/* Media selection timer. */    long last_rx_time;		/* Last Rx, in jiffies, to handle Rx hang. */    int saved_tx_size;    unsigned int tx_unit_busy:1;    unsigned char re_tx,	/* Number of packet retransmissions. */		addr_mode,		/* Current Rx filter e.g. promiscuous, etc. */		pac_cnt_in_tx_buf,		chip_type;};/* This code, written by wwc@super.org, resets the adapter every   TIMED_CHECKER ticks.  This recovers from an unknown error which   hangs the device. */#define TIMED_CHECKER (HZ/4)#ifdef TIMED_CHECKER#include <linux/timer.h>static void atp_timed_checker(unsigned long ignored);#endif/* Index to functions, as function prototypes. */static int atp_probe1(long ioaddr);static void get_node_ID(struct net_device *dev);static unsigned short eeprom_op(long ioaddr, unsigned int cmd);static int net_open(struct net_device *dev);static void hardware_init(struct net_device *dev);static void write_packet(long ioaddr, int length, unsigned char *packet, int pad, int mode);static void trigger_send(long ioaddr, int length);static int	atp_send_packet(struct sk_buff *skb, struct net_device *dev);static irqreturn_t atp_interrupt(int irq, void *dev_id, struct pt_regs *regs);static void net_rx(struct net_device *dev);static void read_block(long ioaddr, int length, unsigned char *buffer, int data_mode);static int net_close(struct net_device *dev);static struct net_device_stats *net_get_stats(struct net_device *dev);static void set_rx_mode_8002(struct net_device *dev);static void set_rx_mode_8012(struct net_device *dev);static void tx_timeout(struct net_device *dev);/* A list of all installed ATP devices, for removing the driver module. */static struct net_device *root_atp_dev;/* Check for a network adapter of this type, and return '0' iff one exists.   If dev->base_addr == 0, probe all likely locations.   If dev->base_addr == 1, always return failure.   If dev->base_addr == 2, allocate space for the device and return success   (detachable devices only).      FIXME: we should use the parport layer for this   */static int __init atp_init(void){	int *port, ports[] = {0x378, 0x278, 0x3bc, 0};	int base_addr = io[0];	if (base_addr > 0x1ff)		/* Check a single specified location. */		return atp_probe1(base_addr);	else if (base_addr == 1)	/* Don't probe at all. */		return -ENXIO;	for (port = ports; *port; port++) {		long ioaddr = *port;		outb(0x57, ioaddr + PAR_DATA);		if (inb(ioaddr + PAR_DATA) != 0x57)			continue;		if (atp_probe1(ioaddr) == 0)			return 0;	}	return -ENODEV;}static int __init atp_probe1(long ioaddr){	struct net_device *dev = NULL;	struct net_local *lp;	int saved_ctrl_reg, status, i;	int res;	outb(0xff, ioaddr + PAR_DATA);	/* Save the original value of the Control register, in case we guessed	   wrong. */	saved_ctrl_reg = inb(ioaddr + PAR_CONTROL);	if (net_debug > 3)		printk("atp: Control register was %#2.2x.\n", saved_ctrl_reg);	/* IRQEN=0, SLCTB=high INITB=high, AUTOFDB=high, STBB=high. */	outb(0x04, ioaddr + PAR_CONTROL);#ifndef final_version	if (net_debug > 3) {		/* Turn off the printer multiplexer on the 8012. */		for (i = 0; i < 8; i++)			outb(mux_8012[i], ioaddr + PAR_DATA);		write_reg(ioaddr, MODSEL, 0x00);		printk("atp: Registers are ");		for (i = 0; i < 32; i++)			printk(" %2.2x", read_nibble(ioaddr, i));		printk(".\n");	}#endif	/* Turn off the printer multiplexer on the 8012. */	for (i = 0; i < 8; i++)		outb(mux_8012[i], ioaddr + PAR_DATA);	write_reg_high(ioaddr, CMR1, CMR1h_RESET);	/* udelay() here? */	status = read_nibble(ioaddr, CMR1);	if (net_debug > 3) {		printk(KERN_DEBUG "atp: Status nibble was %#2.2x..", status);		for (i = 0; i < 32; i++)			printk(" %2.2x", read_nibble(ioaddr, i));		printk("\n");	}	if ((status & 0x78) != 0x08) {		/* The pocket adapter probe failed, restore the control register. */		outb(saved_ctrl_reg, ioaddr + PAR_CONTROL);		return -ENODEV;	}	status = read_nibble(ioaddr, CMR2_h);	if ((status & 0x78) != 0x10) {		outb(saved_ctrl_reg, ioaddr + PAR_CONTROL);		return -ENODEV;	}	dev = alloc_etherdev(sizeof(struct net_local));	if (!dev)		return -ENOMEM;	SET_MODULE_OWNER(dev);	/* Find the IRQ used by triggering an interrupt. */	write_reg_byte(ioaddr, CMR2, 0x01);			/* No accept mode, IRQ out. */	write_reg_high(ioaddr, CMR1, CMR1h_RxENABLE | CMR1h_TxENABLE);	/* Enable Tx and Rx. */	/* Omit autoIRQ routine for now. Use "table lookup" instead.  Uhgggh. */	if (irq[0])		dev->irq = irq[0];	else if (ioaddr == 0x378)		dev->irq = 7;	else		dev->irq = 5;	write_reg_high(ioaddr, CMR1, CMR1h_TxRxOFF); /* Disable Tx and Rx units. */	write_reg(ioaddr, CMR2, CMR2_NULL);	dev->base_addr = ioaddr;	/* Read the station address PROM.  */	get_node_ID(dev);#ifndef MODULE	if (net_debug)		printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB);#endif	printk(KERN_NOTICE "%s: Pocket adapter found at %#3lx, IRQ %d, SAPROM "		   "%02X:%02X:%02X:%02X:%02X:%02X.\n", dev->name, dev->base_addr,		   dev->irq, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],		   dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);	/* Reset the ethernet hardware and activate the printer pass-through. */	write_reg_high(ioaddr, CMR1, CMR1h_RESET | CMR1h_MUX);	lp = netdev_priv(dev);	lp->chip_type = RTL8002;	lp->addr_mode = CMR2h_Normal;	spin_lock_init(&lp->lock);	/* For the ATP adapter the "if_port" is really the data transfer mode. */	if (xcvr[0])		dev->if_port = xcvr[0];	else		dev->if_port = (dev->mem_start & 0xf) ? (dev->mem_start & 0x7) : 4;	if (dev->mem_end & 0xf)		net_debug = dev->mem_end & 7;	dev->open		= net_open;	dev->stop		= net_close;	dev->hard_start_xmit	= atp_send_packet;	dev->get_stats		= net_get_stats;	dev->set_multicast_list =	  lp->chip_type == RTL8002 ? &set_rx_mode_8002 : &set_rx_mode_8012;	dev->tx_timeout		= tx_timeout;	dev->watchdog_timeo	= TX_TIMEOUT;	res = register_netdev(dev);	if (res) {		free_netdev(dev);		return res;	}	lp->next_module = root_atp_dev;	root_atp_dev = dev;	return 0;}/* Read the station address PROM, usually a word-wide EEPROM. */static void __init get_node_ID(struct net_device *dev){	long ioaddr = dev->base_addr;	int sa_offset = 0;	int i;	write_reg(ioaddr, CMR2, CMR2_EEPROM);	  /* Point to the EEPROM control registers. */	/* Some adapters have the station address at offset 15 instead of offset	   zero.  Check for it, and fix it if needed. */	if (eeprom_op(ioaddr, EE_READ(0)) == 0xffff)		sa_offset = 15;	for (i = 0; i < 3; i++)		((u16 *)dev->dev_addr)[i] =			be16_to_cpu(eeprom_op(ioaddr, EE_READ(sa_offset + i)));	write_reg(ioaddr, CMR2, CMR2_NULL);}/*  An EEPROM read command starts by shifting out 0x60+address, and then  shifting in the serial data. See the NatSemi databook for details. *		   ________________ * CS : __| *			   ___	   ___ * CLK: ______|	  |___|	  | *		 __ _______ _______ * DI :	 __X_______X_______X * DO :	 _________X_______X */static unsigned short __init eeprom_op(long ioaddr, u32 cmd){	unsigned eedata_out = 0;	int num_bits = EE_CMD_SIZE;	while (--num_bits >= 0) {		char outval = (cmd & (1<<num_bits)) ? EE_DATA_WRITE : 0;		write_reg_high(ioaddr, PROM_CMD, outval | EE_CLK_LOW);		write_reg_high(ioaddr, PROM_CMD, outval | EE_CLK_HIGH);		eedata_out <<= 1;		if (read_nibble(ioaddr, PROM_DATA) & EE_DATA_READ)			eedata_out++;	}	write_reg_high(ioaddr, PROM_CMD, EE_CLK_LOW & ~EE_CS);	return eedata_out;}/* Open/initialize the board.  This is called (in the current kernel)   sometime after booting when the 'ifconfig' program is run.   This routine sets everything up anew at each open, even   registers that "should" only need to be set once at boot, so that   there is non-reboot way to recover if something goes wrong.   This is an attachable device: if there is no dev->priv entry then it wasn't   probed for at boot-time, and we need to probe for it again.   */static int net_open(struct net_device *dev){	struct net_local *lp = netdev_priv(dev);	int ret;	/* The interrupt line is turned off (tri-stated) when the device isn't in	   use.  That's especially important for "attached" interfaces where the	   port or interrupt may be shared. */	ret = request_irq(dev->irq, &atp_interrupt, 0, dev->name, dev);	if (ret)		return ret;	hardware_init(dev);	init_timer(&lp->timer);	lp->timer.expires = jiffies + TIMED_CHECKER;	lp->timer.data = (unsigned long)dev;	lp->timer.function = &atp_timed_checker;    /* timer handler */	add_timer(&lp->timer);	netif_start_queue(dev);	return 0;}/* This routine resets the hardware.  We initialize everything, assuming that   the hardware may have been temporarily detached. */static void hardware_init(struct net_device *dev){	struct net_local *lp = netdev_priv(dev);	long ioaddr = dev->base_addr;    int i;	/* Turn off the printer multiplexer on the 8012. */	for (i = 0; i < 8; i++)		outb(mux_8012[i], ioaddr + PAR_DATA);	write_reg_high(ioaddr, CMR1, CMR1h_RESET);    for (i = 0; i < 6; i++)		write_reg_byte(ioaddr, PAR0 + i, dev->dev_addr[i]);	write_reg_high(ioaddr, CMR2, lp->addr_mode);	if (net_debug > 2) {		printk(KERN_DEBUG "%s: Reset: current Rx mode %d.\n", dev->name,			   (read_nibble(ioaddr, CMR2_h) >> 3) & 0x0f);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -