📄 thermal.c
字号:
}static intacpi_thermal_hot ( struct acpi_thermal *tz){ int result = 0; struct acpi_device *device = NULL; ACPI_FUNCTION_TRACE("acpi_thermal_hot"); if (!tz || !tz->trips.hot.flags.valid) return_VALUE(-EINVAL); if (tz->temperature >= tz->trips.hot.temperature) { ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Hot trip point\n")); tz->trips.hot.flags.enabled = 1; } else if (tz->trips.hot.flags.enabled) tz->trips.hot.flags.enabled = 0; result = acpi_bus_get_device(tz->handle, &device); if (result) return_VALUE(result); acpi_bus_generate_event(device, ACPI_THERMAL_NOTIFY_HOT, tz->trips.hot.flags.enabled); /* TBD: Call user-mode "sleep(S4)" function */ return_VALUE(0);}static intacpi_thermal_passive ( struct acpi_thermal *tz){ int result = 0; struct acpi_thermal_passive *passive = NULL; int trend = 0; int i = 0; ACPI_FUNCTION_TRACE("acpi_thermal_passive"); if (!tz || !tz->trips.passive.flags.valid) return_VALUE(-EINVAL); passive = &(tz->trips.passive); /* * Above Trip? * ----------- * Calculate the thermal trend (using the passive cooling equation) * and modify the performance limit for all passive cooling devices * accordingly. Note that we assume symmetry. */ if (tz->temperature >= passive->temperature) { trend = (passive->tc1 * (tz->temperature - tz->last_temperature)) + (passive->tc2 * (tz->temperature - passive->temperature)); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "trend[%d]=(tc1[%lu]*(tmp[%lu]-last[%lu]))+(tc2[%lu]*(tmp[%lu]-psv[%lu]))\n", trend, passive->tc1, tz->temperature, tz->last_temperature, passive->tc2, tz->temperature, passive->temperature)); tz->trips.passive.flags.enabled = 1; /* Heating up? */ if (trend > 0) for (i=0; i<passive->devices.count; i++) acpi_processor_set_thermal_limit( passive->devices.handles[i], ACPI_PROCESSOR_LIMIT_INCREMENT); /* Cooling off? */ else if (trend < 0) for (i=0; i<passive->devices.count; i++) acpi_processor_set_thermal_limit( passive->devices.handles[i], ACPI_PROCESSOR_LIMIT_DECREMENT); } /* * Below Trip? * ----------- * Implement passive cooling hysteresis to slowly increase performance * and avoid thrashing around the passive trip point. Note that we * assume symmetry. */ else if (tz->trips.passive.flags.enabled) { for (i=0; i<passive->devices.count; i++) result = acpi_processor_set_thermal_limit( passive->devices.handles[i], ACPI_PROCESSOR_LIMIT_DECREMENT); if (result == 1) { tz->trips.passive.flags.enabled = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Disabling passive cooling (zone is cool)\n")); } } return_VALUE(0);}static intacpi_thermal_active ( struct acpi_thermal *tz){ int result = 0; struct acpi_thermal_active *active = NULL; int i = 0; int j = 0; unsigned long maxtemp = 0; ACPI_FUNCTION_TRACE("acpi_thermal_active"); if (!tz) return_VALUE(-EINVAL); for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++) { active = &(tz->trips.active[i]); if (!active || !active->flags.valid) break; /* * Above Threshold? * ---------------- * If not already enabled, turn ON all cooling devices * associated with this active threshold. */ if (tz->temperature >= active->temperature) { if (active->temperature > maxtemp) tz->state.active_index = i, maxtemp = active->temperature; if (!active->flags.enabled) { for (j = 0; j < active->devices.count; j++) { result = acpi_bus_set_power(active->devices.handles[j], ACPI_STATE_D0); if (result) { ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Unable to turn cooling device [%p] 'on'\n", active->devices.handles[j])); continue; } active->flags.enabled = 1; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling device [%p] now 'on'\n", active->devices.handles[j])); } } } /* * Below Threshold? * ---------------- * Turn OFF all cooling devices associated with this * threshold. */ else if (active->flags.enabled) { for (j = 0; j < active->devices.count; j++) { result = acpi_bus_set_power(active->devices.handles[j], ACPI_STATE_D3); if (result) { ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Unable to turn cooling device [%p] 'off'\n", active->devices.handles[j])); continue; } active->flags.enabled = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling device [%p] now 'off'\n", active->devices.handles[j])); } } } return_VALUE(0);}static void acpi_thermal_check (void *context);static voidacpi_thermal_run ( unsigned long data){ struct acpi_thermal *tz = (struct acpi_thermal *)data; if (!tz->zombie) acpi_os_queue_for_execution(OSD_PRIORITY_GPE, acpi_thermal_check, (void *) data);}static voidacpi_thermal_check ( void *data){ int result = 0; struct acpi_thermal *tz = (struct acpi_thermal *) data; unsigned long sleep_time = 0; int i = 0; struct acpi_thermal_state state; ACPI_FUNCTION_TRACE("acpi_thermal_check"); if (!tz) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n")); return_VOID; } state = tz->state; result = acpi_thermal_get_temperature(tz); if (result) return_VOID; memset(&tz->state, 0, sizeof(tz->state)); /* * Check Trip Points * ----------------- * Compare the current temperature to the trip point values to see * if we've entered one of the thermal policy states. Note that * this function determines when a state is entered, but the * individual policy decides when it is exited (e.g. hysteresis). */ if (tz->trips.critical.flags.valid) state.critical |= (tz->temperature >= tz->trips.critical.temperature); if (tz->trips.hot.flags.valid) state.hot |= (tz->temperature >= tz->trips.hot.temperature); if (tz->trips.passive.flags.valid) state.passive |= (tz->temperature >= tz->trips.passive.temperature); for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++) if (tz->trips.active[i].flags.valid) state.active |= (tz->temperature >= tz->trips.active[i].temperature); /* * Invoke Policy * ------------- * Separated from the above check to allow individual policy to * determine when to exit a given state. */ if (state.critical) acpi_thermal_critical(tz); if (state.hot) acpi_thermal_hot(tz); if (state.passive) acpi_thermal_passive(tz); if (state.active) acpi_thermal_active(tz); /* * Calculate State * --------------- * Again, separated from the above two to allow independent policy * decisions. */ if (tz->trips.critical.flags.enabled) tz->state.critical = 1; if (tz->trips.hot.flags.enabled) tz->state.hot = 1; if (tz->trips.passive.flags.enabled) tz->state.passive = 1; for (i=0; i<ACPI_THERMAL_MAX_ACTIVE; i++) if (tz->trips.active[i].flags.enabled) tz->state.active = 1; /* * Calculate Sleep Time * -------------------- * If we're in the passive state, use _TSP's value. Otherwise * use the default polling frequency (e.g. _TZP). If no polling * frequency is specified then we'll wait forever (at least until * a thermal event occurs). Note that _TSP and _TZD values are * given in 1/10th seconds (we must covert to milliseconds). */ if (tz->state.passive) sleep_time = tz->trips.passive.tsp * 100; else if (tz->polling_frequency > 0) sleep_time = tz->polling_frequency * 100; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "%s: temperature[%lu] sleep[%lu]\n", tz->name, tz->temperature, sleep_time)); /* * Schedule Next Poll * ------------------ */ if (!sleep_time) { if (timer_pending(&(tz->timer))) del_timer(&(tz->timer)); } else { if (timer_pending(&(tz->timer))) mod_timer(&(tz->timer), (HZ * sleep_time) / 1000); else { tz->timer.data = (unsigned long) tz; tz->timer.function = acpi_thermal_run; tz->timer.expires = jiffies + (HZ * sleep_time) / 1000; add_timer(&(tz->timer)); } } return_VOID;}/* -------------------------------------------------------------------------- FS Interface (/proc) -------------------------------------------------------------------------- */struct proc_dir_entry *acpi_thermal_dir;static int acpi_thermal_state_seq_show(struct seq_file *seq, void *offset){ struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; ACPI_FUNCTION_TRACE("acpi_thermal_state_seq_show"); if (!tz) goto end; seq_puts(seq, "state: "); if (!tz->state.critical && !tz->state.hot && !tz->state.passive && !tz->state.active) seq_puts(seq, "ok\n"); else { if (tz->state.critical) seq_puts(seq, "critical "); if (tz->state.hot) seq_puts(seq, "hot "); if (tz->state.passive) seq_puts(seq, "passive "); if (tz->state.active) seq_printf(seq, "active[%d]", tz->state.active_index); seq_puts(seq, "\n"); }end: return 0;}static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file){ return single_open(file, acpi_thermal_state_seq_show, PDE(inode)->data);}static int acpi_thermal_temp_seq_show(struct seq_file *seq, void *offset){ int result = 0; struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; ACPI_FUNCTION_TRACE("acpi_thermal_temp_seq_show"); if (!tz) goto end; result = acpi_thermal_get_temperature(tz); if (result) goto end; seq_printf(seq, "temperature: %ld C\n", KELVIN_TO_CELSIUS(tz->temperature));end: return 0;}static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file){ return single_open(file, acpi_thermal_temp_seq_show, PDE(inode)->data);}static int acpi_thermal_trip_seq_show(struct seq_file *seq, void *offset){ struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; int i = 0; int j = 0; ACPI_FUNCTION_TRACE("acpi_thermal_trip_seq_show"); if (!tz) goto end; if (tz->trips.critical.flags.valid) seq_printf(seq, "critical (S5): %ld C\n", KELVIN_TO_CELSIUS(tz->trips.critical.temperature)); if (tz->trips.hot.flags.valid) seq_printf(seq, "hot (S4): %ld C\n", KELVIN_TO_CELSIUS(tz->trips.hot.temperature)); if (tz->trips.passive.flags.valid) { seq_printf(seq, "passive: %ld C: tc1=%lu tc2=%lu tsp=%lu devices=", KELVIN_TO_CELSIUS(tz->trips.passive.temperature), tz->trips.passive.tc1, tz->trips.passive.tc2, tz->trips.passive.tsp); for (j=0; j<tz->trips.passive.devices.count; j++) { seq_printf(seq, "0x%p ", tz->trips.passive.devices.handles[j]); } seq_puts(seq, "\n"); } for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) { if (!(tz->trips.active[i].flags.valid)) break; seq_printf(seq, "active[%d]: %ld C: devices=", i, KELVIN_TO_CELSIUS(tz->trips.active[i].temperature)); for (j = 0; j < tz->trips.active[i].devices.count; j++) seq_printf(seq, "0x%p ", tz->trips.active[i].devices.handles[j]); seq_puts(seq, "\n"); }end: return 0;}static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file){ return single_open(file, acpi_thermal_trip_seq_show, PDE(inode)->data);}static ssize_tacpi_thermal_write_trip_points ( struct file *file, const char __user *buffer, size_t count, loff_t *ppos){ struct seq_file *m = (struct seq_file *)file->private_data; struct acpi_thermal *tz = (struct acpi_thermal *)m->private; char limit_string[65] = {'\0'}; int num, critical, hot, passive; int active[ACPI_THERMAL_MAX_ACTIVE]; int i = 0; ACPI_FUNCTION_TRACE("acpi_thermal_write_trip_points"); if (!tz || (count > sizeof(limit_string) - 1)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid argument\n")); return_VALUE(-EINVAL); } if (copy_from_user(limit_string, buffer, count)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data\n")); return_VALUE(-EFAULT); } limit_string[count] = '\0'; num = sscanf(limit_string, "%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d", &critical, &hot, &passive, &active[0], &active[1], &active[2], &active[3], &active[4], &active[5], &active[6], &active[7], &active[8], &active[9]); if(!(num >=5 && num < (ACPI_THERMAL_MAX_ACTIVE + 3))) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data format\n")); return_VALUE(-EINVAL); } tz->trips.critical.temperature = CELSIUS_TO_KELVIN(critical); tz->trips.hot.temperature = CELSIUS_TO_KELVIN(hot); tz->trips.passive.temperature = CELSIUS_TO_KELVIN(passive); for (i = 0; i < num - 3; i++) { if (!(tz->trips.active[i].flags.valid)) break; tz->trips.active[i].temperature = CELSIUS_TO_KELVIN(active[i]); } return_VALUE(count);}static int acpi_thermal_cooling_seq_show(struct seq_file *seq, void *offset){ struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; ACPI_FUNCTION_TRACE("acpi_thermal_cooling_seq_show"); if (!tz) goto end; if (!tz->flags.cooling_mode) { seq_puts(seq, "<setting not supported>\n"); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -