📄 learn.m
字号:
% LEARN - Increments the specified example into the current SVM solution.
% Assumes alpha_c = 0 initially.
%
% Syntax: nstatus = learn(indc,rflag)
%
% nstatus: new status for indc
% indc: index of the example to learn
% rflag: flag indicating whether or not to check if any reserve vectors
% become margin vectors during learning
%
% Version 3.22e -- Comments to diehl@alumni.cmu.edu
%
function nstatus = learn(indc,rflag)
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% define global variables
global a; % alpha coefficients
global b; % bias
global C; % regularization parameters
global deps; % jitter factor in kernel matrix
global g; % partial derivatives of cost function w.r.t. alpha coefficients
global ind; % structure containing indices of margin, error, reserve and unlearned vectors
global perturbations; % number of perturbations
global Q; % extended kernel matrix for all vectors
global Rs; % inverse of extended kernel matrix for margin vectors
global scale; % kernel scale
global type; % kernel type
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
% compute g(indc)
[f_c,K] = svmeval(X(:,indc));
g(indc) = y(indc)*f_c - 1;
% if g(indc) > 0, place this example into the reserve set directly
if (g(indc) >= 0)
% move the example to the reserve set
bookkeeping(indc,UNLEARNED,RESERVE);
nstatus = RESERVE;
return;
end;
% compute Qcc and Qc if necessary
num_MVs = length(ind{MARGIN});
Qc = cell(3,1);
if (num_MVs == 0)
if (length(ind{ERROR}) > 0)
Qc{ERROR} = (y(ind{ERROR})*y(indc)).*kernel(X(:,ind{ERROR}),X(:,indc),type,scale);
end;
else
Qc{MARGIN} = (y(ind{MARGIN})*y(indc)).*K(1:num_MVs);
if (length(ind{ERROR}) > 0)
Qc{ERROR} = (y(ind{ERROR})*y(indc)).*K(num_MVs+1:length(K));
end;
end;
if (length(ind{RESERVE}) > 0)
Qc{RESERVE} = (y(ind{RESERVE})*y(indc)).*kernel(X(:,ind{RESERVE}),X(:,indc),type,scale);
end;
Qcc = kernel(X(:,indc),X(:,indc),type,scale) + deps;
converged = 0;
while (~converged)
perturbations = perturbations + 1;
if (num_MVs > 0) % change in alpha_c permitted
% compute Qc, beta and gamma
beta = -Rs*[y(indc) ; Qc{MARGIN}];
gamma = zeros(size(Q,2),1);
ind_temp = [ind{ERROR} ind{RESERVE} indc];
gamma(ind_temp) = [Qc{ERROR} ; Qc{RESERVE} ; Qcc] + Q(:,ind_temp)'*beta;
% check if gamma_c < 0 (kernel matrix is not positive semi-definite)
if (gamma(indc) < 0)
error('LEARN: gamma_c < 0');
end;
else % change in alpha_c not permitted since the constraint on the sum of the
% alphas must be preserved. only b can change.
% set beta and gamma
beta = y(indc);
gamma = y(indc)*y;
end;
% minimum acceptable parameter change (change in alpha_c (num_MVs > 0) or b (num_MVs = 0))
[min_delta_param,indss,cstatus,nstatus] = min_delta_acb(indc,gamma,beta,1,rflag);
% update a, b, and g
if (num_MVs > 0)
a(indc) = a(indc) + min_delta_param;
a(ind{MARGIN}) = a(ind{MARGIN}) + beta(2:num_MVs+1)*min_delta_param;
end;
b = b + beta(1)*min_delta_param;
g = g + gamma*min_delta_param;
% update Qc and perform bookkeeping
converged = (indss == indc);
if (converged)
cstatus = UNLEARNED;
Qc{nstatus} = [Qc{nstatus} ; Qcc];
else
ind_temp = find(ind{cstatus} == indss);
Qc{nstatus} = [Qc{nstatus} ; Qc{cstatus}(ind_temp)];
Qc{cstatus}(ind_temp) = [];
end;
[indco,removed_i] = bookkeeping(indss,cstatus,nstatus);
if ((nstatus == RESERVE) & (removed_i > 0))
Qc{nstatus}(removed_i) = [];
end;
% set g(ind{MARGIN}) to zero
g(ind{MARGIN}) = 0;
% update Rs and Q if necessary
if (nstatus == MARGIN)
num_MVs = num_MVs + 1;
if (num_MVs > 1)
if (converged)
gamma = gamma(indss);
else
% compute beta and gamma for indss
beta = -Rs*Q(:,indss);
gamma = kernel(X(:,indss),X(:,indss),type,scale) + deps + Q(:,indss)'*beta;
end;
end;
% expand Rs and Q
updateRQ(beta,gamma,indss);
elseif (cstatus == MARGIN)
% compress Rs and Q
num_MVs = num_MVs - 1;
updateRQ(indco);
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -