📄 perturbk.m
字号:
% PERTURBK - Perturbs the current solution to the solution valid for the
% given kernel parameter.
%
% Syntax: [a,b,g,ind,X_mer,y_mer,Rs,Q] = perturbk(scale)
%
% a: alpha coefficients
% b: bias
% g: partial derivatives of cost function w.r.t. alpha coefficients
% ind: cell array containing indices of margin, error and reserve vectors
% ind{1}: indices of margin vectors
% ind{2}: indices of error vectors
% ind{3}: indices of reserve vectors
% X_mer: matrix of margin, error and reserve vectors stored columnwise
% y_mer: column vector of class labels (-1/+1) for margin, error and reserve vectors
% Rs: inverse of extended kernel matrix for margin vectors
% Q: extended kernel matrix for all vectors
% scale: kernel scale
%
% Version 3.22e -- Comments to diehl@alumni.cmu.edu
%
function [a,b,g,ind,X,y,Rs,Q] = perturbk(new_scale)
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% define global variables
global a; % alpha coefficients
global b; % bias
global C; % regularization parameters
global deps; % jitter factor in kernel matrix
global g; % partial derivatives of cost function w.r.t. alpha coefficients
global ind; % cell array containing indices of margin, error, reserve and unlearned vectors
global num_unlearned; % number of unlearned vectors initially
global perturbations; % number of perturbations
global Q; % extended kernel matrix for all vectors
global Rs; % inverse of extended kernel matrix for margin vectors
global scale; % kernel scale
global type; % kernel type
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
kernel_evals_begin = kevals;
num_examples = size(X,2);
% sum{k in U} Qik lambda k and sum{k in U} yk lambda k
SQl = zeros(num_examples,1);
Syl = 0;
% adjust kernel scale
scale = new_scale;
% recompute g for the margin, error and reserve vectors
inda = [ind{MARGIN} ind{ERROR} ind{RESERVE}];
[f,K] = svmeval(X(:,inda));
g(inda) = y(inda).*f + a(inda)*deps - 1;
% identify the unlearned vectors and compute their coefficient sensitivities
lambda = zeros(num_examples,1);
% find all error vectors with g >= 0
flag = (g(ind{ERROR}) >= 0);
i = find(flag);
if (length(i) > 0)
% relabel error vectors with g >= 0 as unlearned
ind{UNLEARNED} = [ind{UNLEARNED} ind{ERROR}(i)];
% coefficient sensitivities
lambda(ind{ERROR}(i)) = -a(ind{ERROR}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(ind{ERROR}(i))*y(inda)').*K(length(ind{MARGIN})+i,:))'*lambda(ind{ERROR}(i));
Syl = Syl + y(ind{ERROR}(i))'*lambda(ind{ERROR}(i));
% keep remaining error vectors labeled as such
ind{ERROR}(i) = [];
end;
% find all reserve vectors with g <= 0
flag = (g(ind{RESERVE}) <= 0);
i = find(flag);
if (length(i) > 0)
% relabel reserve vectors with g <= 0 as unlabeled
ind{UNLEARNED} = [ind{UNLEARNED} ind{RESERVE}(i)];
% coefficient sensitivities
lambda(ind{RESERVE}(i)) = C(ind{RESERVE}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(inda)*y(ind{RESERVE}(i))').*kernel(X(:,inda),X(:,ind{RESERVE}(i)),type,scale))*lambda(ind{RESERVE}(i));
Syl = Syl + y(ind{RESERVE}(i))'*lambda(ind{RESERVE}(i));
% keep remaining reserve vectors labeled as such
ind{RESERVE}(i) = [];
end;
% find all margin vectors with g > 0
flag = (g(ind{MARGIN}) > 0);
i = find(flag);
if (length(i) > 0)
% coefficient sensitivities
lambda(ind{MARGIN}(i)) = -a(ind{MARGIN}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(ind{MARGIN}(i))*y(inda)').*K(i,:))'*lambda(ind{MARGIN}(i));
Syl = Syl + y(ind{MARGIN}(i))'*lambda(ind{MARGIN}(i));
end;
% find all margin vectors with g <= 0
flag = ~flag;
i = find(flag);
if (length(i) > 0)
% coefficient sensitivities
lambda(ind{MARGIN}(i)) = C(ind{MARGIN}(i))-a(ind{MARGIN}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(ind{MARGIN}(i))*y(inda)').*K(i,:))'*lambda(ind{MARGIN}(i));
Syl = Syl + y(ind{MARGIN}(i))'*lambda(ind{MARGIN}(i));
end;
% relabel margin vectors as unlearned
ind{UNLEARNED} = [ind{UNLEARNED} ind{MARGIN}];
ind{MARGIN} = [];
% add jitter factor
SQl(ind{UNLEARNED}) = SQl(ind{UNLEARNED}) + deps*lambda(ind{UNLEARNED});
% number of unlearned vectors initially
num_unlearned = length(ind{UNLEARNED});
s = sprintf('Number of unlearned vectors: %d',num_unlearned);
disp(s);
% reset Q and Rs
Q = Q(1,:);
Rs = Inf;
p_s = 0;
num_MVs = length(ind{MARGIN});
num_learned = 0;
perturbations = 0;
while ((length(ind{UNLEARNED}) > 0) | ((p_s < 1) & (length(ind{UNLEARNED}) == 0)))
perturbations = perturbations + 1;
% compute beta and gamma
if (num_MVs > 0)
v = zeros(num_MVs+1,1);
if (p_s < 1-eps)
v(1) = -Syl - sum(y.*a)/(1-p_s);
else
v(1) = -Syl;
end;
v(2:num_MVs+1) = -SQl(ind{MARGIN});
beta = Rs*v;
gamma = zeros(size(Q,2),1);
ind_temp = [ind{ERROR} ind{RESERVE} ind{UNLEARNED}];
gamma(ind_temp) = Q(:,ind_temp)'*beta + SQl(ind_temp);
else
beta = 0;
gamma = SQl;
end;
% minimum acceptable parameter change
[min_dps,indss,cstatus,nstatus] = min_delta_p_s(p_s,gamma,beta,lambda);
% update a, b, g and p_s
if (length(ind{UNLEARNED}) > 0)
a(ind{UNLEARNED}) = a(ind{UNLEARNED}) + lambda(ind{UNLEARNED})*min_dps;
end;
if (num_MVs > 0)
a(ind{MARGIN}) = a(ind{MARGIN}) + beta(2:num_MVs+1)*min_dps;
end;
b = b + beta(1)*min_dps;
g = g + gamma*min_dps;
p_s = p_s + min_dps;
% perform bookkeeping
indco = bookkeeping(indss,cstatus,nstatus);
% set g(ind{MARGIN}) to zero
g(ind{MARGIN}) = 0;
% update Rs and Q if necessary
if (nstatus == MARGIN)
num_MVs = num_MVs + 1;
if (num_MVs > 1)
% compute beta and gamma for indss
beta = -Rs*Q(:,indss);
gamma = kernel(X(:,indss),X(:,indss),type,scale) + deps + Q(:,indss)'*beta;
end;
% expand Rs and Q
updateRQ(beta,gamma,indss);
elseif (cstatus == MARGIN)
% compress Rs and Q
num_MVs = num_MVs - 1;
updateRQ(indco);
end;
% update SQl and Syl when the current status of indss is UNLEARNED
if (cstatus == UNLEARNED)
num_learned = num_learned + 1;
if (nstatus == MARGIN)
SQl = SQl - Q(num_MVs+1,:)'*lambda(indss);
else
SQl = SQl - ((y*y(indss)).*kernel(X,X(:,indss),type,scale))*lambda(indss);
SQl(indss) = SQl(indss) - deps*lambda(indss);
end;
Syl = Syl - y(indss)*lambda(indss);
if (mod(num_learned,50) == 0)
s = sprintf('Learned %d examples.',num_learned);
disp(s);
end;
end;
end;
disp('Perturbation complete!');
% summary statistics
s = sprintf('\nMargin vectors:\t\t%d',length(ind{MARGIN}));
disp(s);
s = sprintf('Error vectors:\t\t%d',length(ind{ERROR}));
disp(s);
s = sprintf('Reserve vectors:\t%d',length(ind{RESERVE}));
disp(s);
s = sprintf('Kernel evaluations:\t%d\n',-kernel_evals_begin+kevals);
disp(s);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -