📄 perturbc.m.svn-base
字号:
% PERTURBC - Perturbs the current solution to the solution valid for the
% given regularization parameters.
%
% Syntax: [a,b,g,ind,X_mer,y_mer,Rs,Q] = perturbc(C)
%
% a: alpha coefficients
% b: bias
% g: partial derivatives of cost function w.r.t. alpha coefficients
% ind: cell array containing indices of margin, error and reserve vectors
% ind{1}: indices of margin vectors
% ind{2}: indices of error vectors
% ind{3}: indices of reserve vectors
% X_mer: matrix of margin, error and reserve vectors stored columnwise
% y_mer: column vector of class labels (-1/+1) for margin, error and reserve vectors
% Rs: inverse of extended kernel matrix for margin vectors
% Q: extended kernel matrix for all vectors
% C: soft-margin regularization parameter(s)
% dimensionality of C assumption
% 1-dimensional vector universal regularization parameter
% 2-dimensional vector class-conditional regularization parameters (-1/+1)
% n-dimensional vector regularization parameter per example
% (where n = # of examples)
%
% Version 3.22e -- Comments to diehl@alumni.cmu.edu
%
function [a,b,g,ind,X,y,Rs,Q] = perturbc(C_new)
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% define global variables
global a; % alpha coefficients
global b; % bias
global C; % regularization parameters
global deps; % jitter factor in kernel matrix
global g; % partial derivatives of cost function w.r.t. alpha coefficients
global ind; % cell array containing indices of margin, error, reserve and unlearned vectors
global perturbations; % number of perturbations
global Q; % extended kernel matrix for all vectors
global Rs; % inverse of extended kernel matrix for margin vectors
global scale; % kernel scale
global type; % kernel type
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
kernel_evals_begin = kevals;
% create a vector containing the regularization parameter
% for each example if necessary
if (length(C_new) == 1) % same regularization parameter for all examples
C_new = C_new*ones(size(y));
elseif (length(C_new) == 2) % class-conditional regularization parameters
flags = (y == -1);
C_new = C_new(1)*flags + C_new(2)*(~flags);
end;
% compute the regularization sensitivities
lambda = C_new-C;
% if there are no error vectors initially...
if (length(ind{ERROR}) == 0)
% find all the examples that have changing regularization parameters
inde = find(lambda ~= 0);
% find the subset of the above examples that could become error vectors
delta_p = (a(inde)-C(inde))./lambda(inde);
i = find(delta_p > 0);
% determine the minimum acceptable change in p and adjust the regularization parameters
p = min([delta_p(i) ; 1]);
C = C + lambda*p;
% if one example becomes an error vector, perform the necessary bookkeeping
if (p < 1)
i = find(delta_p == p);
indco = bookkeeping(inde(i),MARGIN,ERROR);
updateRQ(indco);
end;
else
p = 0;
end;
% if there are error vectors to adjust...
if (p < 1)
% compute sum{k in E} Qik lambda k and sum{k in E} yk lambda k
SQl = ((y*y(ind{ERROR})').*kernel(X,X(:,ind{ERROR}),type,scale))*lambda(ind{ERROR});
SQl(ind{ERROR}) = SQl(ind{ERROR}) + deps*lambda(ind{ERROR});
Syl = y(ind{ERROR})'*lambda(ind{ERROR});
end;
s = sprintf('p = %.2f',p);
disp(s);
% change the regularization parameters incrementally
disp_p_delta = 0.2;
disp_p_count = 1;
num_MVs = length(ind{MARGIN});
perturbations = 0;
while (p < 1)
perturbations = perturbations + 1;
% compute beta and gamma
if (num_MVs > 0)
v = zeros(num_MVs+1,1);
if (p < 1-eps)
v(1) = -Syl - sum(y.*a)/(1-p);
else
v(1) = -Syl;
end;
v(2:num_MVs+1) = -SQl(ind{MARGIN});
beta = Rs*v;
gamma = zeros(size(Q,2),1);
ind_temp = [ind{ERROR} ind{RESERVE} ind{UNLEARNED}];
if (length(ind_temp) > 0)
gamma(ind_temp) = Q(:,ind_temp)'*beta + SQl(ind_temp);
end;
else
beta = 0;
gamma = SQl;
end;
% minimum acceptable parameter change
[min_delta_p,indss,cstatus,nstatus] = min_delta_p_c(p,gamma,beta,lambda);
% update a, b, g and p
if (length(ind{ERROR}) > 0)
a(ind{ERROR}) = a(ind{ERROR}) + lambda(ind{ERROR})*min_delta_p;
end;
if (num_MVs > 0)
a(ind{MARGIN}) = a(ind{MARGIN}) + beta(2:num_MVs+1)*min_delta_p;
end;
b = b + beta(1)*min_delta_p;
g = g + gamma*min_delta_p;
p = p + min_delta_p;
C = C + lambda*min_delta_p;
% perform bookkeeping
indco = bookkeeping(indss,cstatus,nstatus);
% update SQl and Syl when the status of indss changes from MARGIN to ERROR
if ((cstatus == MARGIN) & (nstatus == ERROR))
SQl = SQl + Q(indco,:)'*lambda(indss);
Syl = Syl + y(indss)*lambda(indss);
end;
% set g(ind{MARGIN}) to zero
g(ind{MARGIN}) = 0;
% update Rs and Q if necessary
if (nstatus == MARGIN)
num_MVs = num_MVs + 1;
if (num_MVs > 1)
% compute beta and gamma for indss
beta = -Rs*Q(:,indss);
gamma = kernel(X(:,indss),X(:,indss),type,scale) + deps + Q(:,indss)'*beta;
end;
% expand Rs and Q
updateRQ(beta,gamma,indss);
elseif (cstatus == MARGIN)
% compress Rs and Q
num_MVs = num_MVs - 1;
updateRQ(indco);
end;
% update SQl and Syl when the status of indss changes from ERROR to MARGIN
if ((cstatus == ERROR) & (nstatus == MARGIN))
SQl = SQl - Q(num_MVs+1,:)'*lambda(indss);
Syl = Syl - y(indss)*lambda(indss);
end;
if (p >= disp_p_delta*disp_p_count)
disp_p_count = disp_p_count + 1;
s = sprintf('p = %.2f',p);
disp(s);
end;
end;
disp('Perturbation complete!');
% summary statistics
s = sprintf('\nMargin vectors:\t\t%d',length(ind{MARGIN}));
disp(s);
s = sprintf('Error vectors:\t\t%d',length(ind{ERROR}));
disp(s);
s = sprintf('Reserve vectors:\t%d',length(ind{RESERVE}));
disp(s);
s = sprintf('Kernel evaluations:\t%d\n',-kernel_evals_begin+kevals);
disp(s);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -