⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtoa.c

📁 这是一个同样来自贝尔实验室的和UNIX有着渊源的操作系统, 其简洁的设计和实现易于我们学习和理解
💻 C
📖 第 1 页 / 共 2 页
字号:
				udx0 = 0;				xshift = 1;			}			continue;		} else if (/*(*/ c == ')') {			*sp = s + 1;			break;		} else			return;	/* invalid form: don't change *sp */		havedig = 1;		if (xshift) {			xshift = 0;			x[0] = x[1];			x[1] = 0;		}		if (udx0)			x[0] = (x[0] << 4) | (x[1] >> 28);		x[1] = (x[1] << 4) | c;	}	if ((x[0] &= 0xfffff) || x[1]) {		fpword0(*rvp) = Exp_mask | x[0];		fpword1(*rvp) = x[1];	}}static int	quorem(Bigint *b, Bigint *S){	int	n;	unsigned int * bx, *bxe, q, *sx, *sxe;	unsigned int borrow, carry, y, ys;	unsigned int si, z, zs;	n = S->wds;	if (b->wds < n)		return 0;	sx = S->x;	sxe = sx + --n;	bx = b->x;	bxe = bx + n;	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */	if (q) {		borrow = 0;		carry = 0;		do {			si = *sx++;			ys = (si & 0xffff) * q + carry;			zs = (si >> 16) * q + (ys >> 16);			carry = zs >> 16;			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;			borrow = (y & 0x10000) >> 16;			z = (*bx >> 16) - (zs & 0xffff) - borrow;			borrow = (z & 0x10000) >> 16;			Storeinc(bx, z, y);		} while (sx <= sxe);		if (!*bxe) {			bx = b->x;			while (--bxe > bx && !*bxe)				--n;			b->wds = n;		}	}	if (cmp(b, S) >= 0) {		q++;		borrow = 0;		carry = 0;		bx = b->x;		sx = S->x;		do {			si = *sx++;			ys = (si & 0xffff) + carry;			zs = (si >> 16) + (ys >> 16);			carry = zs >> 16;			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;			borrow = (y & 0x10000) >> 16;			z = (*bx >> 16) - (zs & 0xffff) - borrow;			borrow = (z & 0x10000) >> 16;			Storeinc(bx, z, y);		} while (sx <= sxe);		bx = b->x;		bxe = bx + n;		if (!*bxe) {			while (--bxe > bx && !*bxe)				--n;			b->wds = n;		}	}	return q;}static char	*rv_alloc(int i){	int	j, k, *r;	j = sizeof(unsigned int);	for (k = 0; 	    sizeof(Bigint) - sizeof(unsigned int) - sizeof(int) + j <= i; 	    j <<= 1)		k++;	r = (int * )Balloc(k);	*r = k;	return	    (char *)(r + 1);}static char	*nrv_alloc(char *s, char **rve, int n){	char	*rv, *t;	t = rv = rv_alloc(n);	while (*t = *s++) 		t++;	if (rve)		*rve = t;	return rv;}/* freedtoa(s) must be used to free values s returned by dtoa * when MULTIPLE_THREADS is #defined.  It should be used in all cases, * but for consistency with earlier versions of dtoa, it is optional * when MULTIPLE_THREADS is not defined. */voidfreedtoa(char *s){	Bigint * b = (Bigint * )((int *)s - 1);	b->maxwds = 1 << (b->k = *(int * )b);	Bfree(b);}/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: *	1. Rather than iterating, we use a simple numeric overestimate *	   to determine k = floor(log10(d)).  We scale relevant *	   quantities using O(log2(k)) rather than O(k) multiplications. *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't *	   try to generate digits strictly left to right.  Instead, we *	   compute with fewer bits and propagate the carry if necessary *	   when rounding the final digit up.  This is often faster. *	3. Under the assumption that input will be rounded nearest, *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. *	   That is, we allow equality in stopping tests when the *	   round-nearest rule will give the same floating-point value *	   as would satisfaction of the stopping test with strict *	   inequality. *	4. We remove common factors of powers of 2 from relevant *	   quantities. *	5. When converting floating-point integers less than 1e16, *	   we use floating-point arithmetic rather than resorting *	   to multiple-precision integers. *	6. When asked to produce fewer than 15 digits, we first try *	   to get by with floating-point arithmetic; we resort to *	   multiple-precision integer arithmetic only if we cannot *	   guarantee that the floating-point calculation has given *	   the correctly rounded result.  For k requested digits and *	   "uniformly" distributed input, the probability is *	   something like 10^(k-15) that we must resort to the int *	   calculation. */char	*dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve){	/*	Arguments ndigits, decpt, sign are similar to those	of ecvt and fcvt; trailing zeros are suppressed from	the returned string.  If not null, *rve is set to point	to the end of the return value.  If d is +-Infinity or NaN,	then *decpt is set to 9999.	mode:		0 ==> shortest string that yields d when read in			and rounded to nearest.		1 ==> like 0, but with Steele & White stopping rule;			e.g. with IEEE P754 arithmetic , mode 0 gives			1e23 whereas mode 1 gives 9.999999999999999e22.		2 ==> max(1,ndigits) significant digits.  This gives a			return value similar to that of ecvt, except			that trailing zeros are suppressed.		3 ==> through ndigits past the decimal point.  This			gives a return value similar to that from fcvt,			except that trailing zeros are suppressed, and			ndigits can be negative.		4-9 should give the same return values as 2-3, i.e.,			4 <= mode <= 9 ==> same return as mode			2 + (mode & 1).  These modes are mainly for			debugging; often they run slower but sometimes			faster than modes 2-3.		4,5,8,9 ==> left-to-right digit generation.		6-9 ==> don't try fast floating-point estimate			(if applicable).		Values of mode other than 0-9 are treated as mode 0.		Sufficient space is allocated to the return value		to hold the suppressed trailing zeros.	*/	int	bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,	j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,	spec_case, try_quick;	int L;	Bigint * b, *b1, *delta, *mlo=nil, *mhi, *S;	double	d2, ds, eps;	char	*s, *s0;	if (fpword0(d) & Sign_bit) {		/* set sign for everything, including 0's and NaNs */		*sign = 1;		fpword0(d) &= ~Sign_bit;	/* clear sign bit */	} else		*sign = 0;	if ((fpword0(d) & Exp_mask) == Exp_mask) {		/* Infinity or NaN */		*decpt = 9999;		if (!fpword1(d) && !(fpword0(d) & 0xfffff))			return nrv_alloc("Infinity", rve, 8);		return nrv_alloc("NaN", rve, 3);	}	if (!d) {		*decpt = 1;		return nrv_alloc("0", rve, 1);	}	b = d2b(d, &be, &bbits);	i = (int)(fpword0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));	d2 = d;	fpword0(d2) &= Frac_mask1;	fpword0(d2) |= Exp_11;	/* log(x)	~=~ log(1.5) + (x-1.5)/1.5		 * log10(x)	 =  log(x) / log(10)		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)		 *		 * This suggests computing an approximation k to log10(d) by		 *		 * k = (i - Bias)*0.301029995663981		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );		 *		 * We want k to be too large rather than too small.		 * The error in the first-order Taylor series approximation		 * is in our favor, so we just round up the constant enough		 * to compensate for any error in the multiplication of		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,		 * adding 1e-13 to the constant term more than suffices.		 * Hence we adjust the constant term to 0.1760912590558.		 * (We could get a more accurate k by invoking log10,		 *  but this is probably not worthwhile.)		 */	i -= Bias;	ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;	k = (int)ds;	if (ds < 0. && ds != k)		k--;	/* want k = floor(ds) */	k_check = 1;	if (k >= 0 && k <= Ten_pmax) {		if (d < tens[k])			k--;		k_check = 0;	}	j = bbits - i - 1;	if (j >= 0) {		b2 = 0;		s2 = j;	} else {		b2 = -j;		s2 = 0;	}	if (k >= 0) {		b5 = 0;		s5 = k;		s2 += k;	} else {		b2 -= k;		b5 = -k;		s5 = 0;	}	if (mode < 0 || mode > 9)		mode = 0;	try_quick = 1;	if (mode > 5) {		mode -= 4;		try_quick = 0;	}	leftright = 1;	switch (mode) {	case 0:	case 1:		ilim = ilim1 = -1;		i = 18;		ndigits = 0;		break;	case 2:		leftright = 0;		/* no break */	case 4:		if (ndigits <= 0)			ndigits = 1;		ilim = ilim1 = i = ndigits;		break;	case 3:		leftright = 0;		/* no break */	case 5:		i = ndigits + k + 1;		ilim = i;		ilim1 = i - 1;		if (i <= 0)			i = 1;	}	s = s0 = rv_alloc(i);	if (ilim >= 0 && ilim <= Quick_max && try_quick) {		/* Try to get by with floating-point arithmetic. */		i = 0;		d2 = d;		k0 = k;		ilim0 = ilim;		ieps = 2; /* conservative */		if (k > 0) {			ds = tens[k&0xf];			j = k >> 4;			if (j & Bletch) {				/* prevent overflows */				j &= Bletch - 1;				d /= bigtens[n_bigtens-1];				ieps++;			}			for (; j; j >>= 1, i++)				if (j & 1) {					ieps++;					ds *= bigtens[i];				}			d /= ds;		} else if (j1 = -k) {			d *= tens[j1 & 0xf];			for (j = j1 >> 4; j; j >>= 1, i++)				if (j & 1) {					ieps++;					d *= bigtens[i];				}		}		if (k_check && d < 1. && ilim > 0) {			if (ilim1 <= 0)				goto fast_failed;			ilim = ilim1;			k--;			d *= 10.;			ieps++;		}		eps = ieps * d + 7.;		fpword0(eps) -= (P - 1) * Exp_msk1;		if (ilim == 0) {			S = mhi = 0;			d -= 5.;			if (d > eps)				goto one_digit;			if (d < -eps)				goto no_digits;			goto fast_failed;		}		/* Generate ilim digits, then fix them up. */		eps *= tens[ilim-1];		for (i = 1; ; i++, d *= 10.) {			L = d;			d -= L;			*s++ = '0' + (int)L;			if (i == ilim) {				if (d > 0.5 + eps)					goto bump_up;				else if (d < 0.5 - eps) {					while (*--s == '0')						;					s++;					goto ret1;				}				break;			}		}fast_failed:		s = s0;		d = d2;		k = k0;		ilim = ilim0;	}	/* Do we have a "small" integer? */	if (be >= 0 && k <= Int_max) {		/* Yes. */		ds = tens[k];		if (ndigits < 0 && ilim <= 0) {			S = mhi = 0;			if (ilim < 0 || d <= 5 * ds)				goto no_digits;			goto one_digit;		}		for (i = 1; ; i++) {			L = d / ds;			d -= L * ds;			*s++ = '0' + (int)L;			if (i == ilim) {				d += d;				if (d > ds || d == ds && L & 1) {bump_up:					while (*--s == '9')						if (s == s0) {							k++;							*s = '0';							break;						}					++ * s++;				}				break;			}			if (!(d *= 10.))				break;		}		goto ret1;	}	m2 = b2;	m5 = b5;	mhi = mlo = 0;	if (leftright) {		if (mode < 2) {			i = 			    1 + P - bbits;		} else {			j = ilim - 1;			if (m5 >= j)				m5 -= j;			else {				s5 += j -= m5;				b5 += j;				m5 = 0;			}			if ((i = ilim) < 0) {				m2 -= i;				i = 0;			}		}		b2 += i;		s2 += i;		mhi = i2b(1);	}	if (m2 > 0 && s2 > 0) {		i = m2 < s2 ? m2 : s2;		b2 -= i;		m2 -= i;		s2 -= i;	}	if (b5 > 0) {		if (leftright) {			if (m5 > 0) {				mhi = pow5mult(mhi, m5);				b1 = mult(mhi, b);				Bfree(b);				b = b1;			}			if (j = b5 - m5)				b = pow5mult(b, j);		} else			b = pow5mult(b, b5);	}	S = i2b(1);	if (s5 > 0)		S = pow5mult(S, s5);	/* Check for special case that d is a normalized power of 2. */	spec_case = 0;	if (mode < 2) {		if (!fpword1(d) && !(fpword0(d) & Bndry_mask)		    ) {			/* The special case */			b2 += Log2P;			s2 += Log2P;			spec_case = 1;		}	}	/* Arrange for convenient computation of quotients:	 * shift left if necessary so divisor has 4 leading 0 bits.	 *	 * Perhaps we should just compute leading 28 bits of S once	 * and for all and pass them and a shift to quorem, so it	 * can do shifts and ors to compute the numerator for q.	 */	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)		i = 32 - i;	if (i > 4) {		i -= 4;		b2 += i;		m2 += i;		s2 += i;	} else if (i < 4) {		i += 28;		b2 += i;		m2 += i;		s2 += i;	}	if (b2 > 0)		b = lshift(b, b2);	if (s2 > 0)		S = lshift(S, s2);	if (k_check) {		if (cmp(b, S) < 0) {			k--;			b = multadd(b, 10, 0);	/* we botched the k estimate */			if (leftright)				mhi = multadd(mhi, 10, 0);			ilim = ilim1;		}	}	if (ilim <= 0 && mode > 2) {		if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) {			/* no digits, fcvt style */no_digits:			k = -1 - ndigits;			goto ret;		}one_digit:		*s++ = '1';		k++;		goto ret;	}	if (leftright) {		if (m2 > 0)			mhi = lshift(mhi, m2);		/* Compute mlo -- check for special case		 * that d is a normalized power of 2.		 */		mlo = mhi;		if (spec_case) {			mhi = Balloc(mhi->k);			Bcopy(mhi, mlo);			mhi = lshift(mhi, Log2P);		}		for (i = 1; ; i++) {			dig = quorem(b, S) + '0';			/* Do we yet have the shortest decimal string			 * that will round to d?			 */			j = cmp(b, mlo);			delta = diff(S, mhi);			j1 = delta->sign ? 1 : cmp(b, delta);			Bfree(delta);			if (j1 == 0 && !mode && !(fpword1(d) & 1)) {				if (dig == '9')					goto round_9_up;				if (j > 0)					dig++;				*s++ = dig;				goto ret;			}			if (j < 0 || j == 0 && !mode			     && !(fpword1(d) & 1)			    ) {				if (j1 > 0) {					b = lshift(b, 1);					j1 = cmp(b, S);					if ((j1 > 0 || j1 == 0 && dig & 1)					     && dig++ == '9')						goto round_9_up;				}				*s++ = dig;				goto ret;			}			if (j1 > 0) {				if (dig == '9') { /* possible if i == 1 */round_9_up:					*s++ = '9';					goto roundoff;				}				*s++ = dig + 1;				goto ret;			}			*s++ = dig;			if (i == ilim)				break;			b = multadd(b, 10, 0);			if (mlo == mhi)				mlo = mhi = multadd(mhi, 10, 0);			else {				mlo = multadd(mlo, 10, 0);				mhi = multadd(mhi, 10, 0);			}		}	} else		for (i = 1; ; i++) {			*s++ = dig = quorem(b, S) + '0';			if (i >= ilim)				break;			b = multadd(b, 10, 0);		}	/* Round off last digit */	b = lshift(b, 1);	j = cmp(b, S);	if (j > 0 || j == 0 && dig & 1) {roundoff:		while (*--s == '9')			if (s == s0) {				k++;				*s++ = '1';				goto ret;			}		++ * s++;	} else {		while (*--s == '0')			;		s++;	}ret:	Bfree(S);	if (mhi) {		if (mlo && mlo != mhi)			Bfree(mlo);		Bfree(mhi);	}ret1:	Bfree(b);	*s = 0;	*decpt = k + 1;	if (rve)		*rve = s;	return s0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -