⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tstack.c

📁 这是一个同样来自贝尔实验室的和UNIX有着渊源的操作系统, 其简洁的设计和实现易于我们学习和理解
💻 C
字号:
/*% cc -gpc % * These transformation routines maintain stacks of transformations * and their inverses.   * t=pushmat(t)		push matrix stack * t=popmat(t)		pop matrix stack * rot(t, a, axis)	multiply stack top by rotation * qrot(t, q)		multiply stack top by rotation, q is unit quaternion * scale(t, x, y, z)	multiply stack top by scale * move(t, x, y, z)	multiply stack top by translation * xform(t, m)		multiply stack top by m * ixform(t, m, inv)	multiply stack top by m.  inv is the inverse of m. * look(t, e, l, u)	multiply stack top by viewing transformation * persp(t, fov, n, f)	multiply stack top by perspective transformation * viewport(t, r, aspect) *			multiply stack top by window->viewport transformation. */#include <u.h>#include <libc.h>#include <draw.h>#include <geometry.h>Space *pushmat(Space *t){	Space *v;	v=malloc(sizeof(Space));	if(t==0){		ident(v->t);		ident(v->tinv);	}	else		*v=*t;	v->next=t;	return v;}Space *popmat(Space *t){	Space *v;	if(t==0) return 0;	v=t->next;	free(t);	return v;}void rot(Space *t, double theta, int axis){	double s=sin(radians(theta)), c=cos(radians(theta));	Matrix m, inv;	register i=(axis+1)%3, j=(axis+2)%3;	ident(m);	m[i][i] = c;	m[i][j] = -s;	m[j][i] = s;	m[j][j] = c;	ident(inv);	inv[i][i] = c;	inv[i][j] = s;	inv[j][i] = -s;	inv[j][j] = c;	ixform(t, m, inv);}void qrot(Space *t, Quaternion q){	Matrix m, inv;	int i, j;	qtom(m, q);	for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i];	ixform(t, m, inv);}void scale(Space *t, double x, double y, double z){	Matrix m, inv;	ident(m);	m[0][0]=x;	m[1][1]=y;	m[2][2]=z;	ident(inv);	inv[0][0]=1/x;	inv[1][1]=1/y;	inv[2][2]=1/z;	ixform(t, m, inv);}void move(Space *t, double x, double y, double z){	Matrix m, inv;	ident(m);	m[0][3]=x;	m[1][3]=y;	m[2][3]=z;	ident(inv);	inv[0][3]=-x;	inv[1][3]=-y;	inv[2][3]=-z;	ixform(t, m, inv);}void xform(Space *t, Matrix m){	Matrix inv;	if(invertmat(m, inv)==0) return;	ixform(t, m, inv);}void ixform(Space *t, Matrix m, Matrix inv){	matmul(t->t, m);	matmulr(t->tinv, inv);}/* * multiply the top of the matrix stack by a view-pointing transformation * with the eyepoint at e, looking at point l, with u at the top of the screen. * The coordinate system is deemed to be right-handed. * The generated transformation transforms this view into a view from * the origin, looking in the positive y direction, with the z axis pointing up, * and x to the right. */void look(Space *t, Point3 e, Point3 l, Point3 u){	Matrix m, inv;	Point3 r;	l=unit3(sub3(l, e));	u=unit3(vrem3(sub3(u, e), l));	r=cross3(l, u);	/* make the matrix to transform from (rlu) space to (xyz) space */	ident(m);	m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z;	m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z;	m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z;	ident(inv);	inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x;	inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y;	inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z;	ixform(t, m, inv);	move(t, -e.x, -e.y, -e.z);}/* * generate a transformation that maps the frustum with apex at the origin, * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. * plane y=n maps to y'=-1, y=f maps to y'=1 */int persp(Space *t, double fov, double n, double f){	Matrix m;	double z;	if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */		return -1;	z=1/tan(radians(fov)/2);	m[0][0]=z; m[0][1]=0;           m[0][2]=0; m[0][3]=0;	m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]);	m[2][0]=0; m[2][1]=0;           m[2][2]=z; m[2][3]=0;	m[3][0]=0; m[3][1]=1;           m[3][2]=0; m[3][3]=0;	xform(t, m);	return 0;}/* * Map the unit-cube window into the given screen viewport. * r has min at the top left, max just outside the lower right.  Aspect is the * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) * The whole window is transformed to fit centered inside the viewport with equal * slop on either top and bottom or left and right, depending on the viewport's * aspect ratio. * The window is viewed down the y axis, with x to the left and z up.  The viewport * has x increasing to the right and y increasing down.  The window's y coordinates * are mapped, unchanged, into the viewport's z coordinates. */void viewport(Space *t, Rectangle r, double aspect){	Matrix m;	double xc, yc, wid, hgt, scale;	xc=.5*(r.min.x+r.max.x);	yc=.5*(r.min.y+r.max.y);	wid=(r.max.x-r.min.x)*aspect;	hgt=r.max.y-r.min.y;	scale=.5*(wid<hgt?wid:hgt);	ident(m);	m[0][0]=scale;	m[0][3]=xc;	m[1][1]=0;	m[1][2]=-scale;	m[1][3]=yc;	m[2][1]=1;	m[2][2]=0;	/* should get inverse by hand */	xform(t, m);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -