⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 _dtoa.c

📁 这是一个同样来自贝尔实验室的和UNIX有着渊源的操作系统, 其简洁的设计和实现易于我们学习和理解
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "fconv.h"static int quorem(Bigint *, Bigint *);/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: *	1. Rather than iterating, we use a simple numeric overestimate *	   to determine k = floor(log10(d)).  We scale relevant *	   quantities using O(log2(k)) rather than O(k) multiplications. *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't *	   try to generate digits strictly left to right.  Instead, we *	   compute with fewer bits and propagate the carry if necessary *	   when rounding the final digit up.  This is often faster. *	3. Under the assumption that input will be rounded nearest, *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. *	   That is, we allow equality in stopping tests when the *	   round-nearest rule will give the same floating-point value *	   as would satisfaction of the stopping test with strict *	   inequality. *	4. We remove common factors of powers of 2 from relevant *	   quantities. *	5. When converting floating-point integers less than 1e16, *	   we use floating-point arithmetic rather than resorting *	   to multiple-precision integers. *	6. When asked to produce fewer than 15 digits, we first try *	   to get by with floating-point arithmetic; we resort to *	   multiple-precision integer arithmetic only if we cannot *	   guarantee that the floating-point calculation has given *	   the correctly rounded result.  For k requested digits and *	   "uniformly" distributed input, the probability is *	   something like 10^(k-15) that we must resort to the long *	   calculation. */ char *_dtoa(double darg, int mode, int ndigits, int *decpt, int *sign, char **rve){ /*	Arguments ndigits, decpt, sign are similar to those	of ecvt and fcvt; trailing zeros are suppressed from	the returned string.  If not null, *rve is set to point	to the end of the return value.  If d is +-Infinity or NaN,	then *decpt is set to 9999.	mode:		0 ==> shortest string that yields d when read in			and rounded to nearest.		1 ==> like 0, but with Steele & White stopping rule;			e.g. with IEEE P754 arithmetic , mode 0 gives			1e23 whereas mode 1 gives 9.999999999999999e22.		2 ==> max(1,ndigits) significant digits.  This gives a			return value similar to that of ecvt, except			that trailing zeros are suppressed.		3 ==> through ndigits past the decimal point.  This			gives a return value similar to that from fcvt,			except that trailing zeros are suppressed, and			ndigits can be negative.		4-9 should give the same return values as 2-3, i.e.,			4 <= mode <= 9 ==> same return as mode			2 + (mode & 1).  These modes are mainly for			debugging; often they run slower but sometimes			faster than modes 2-3.		4,5,8,9 ==> left-to-right digit generation.		6-9 ==> don't try fast floating-point estimate			(if applicable).		Values of mode other than 0-9 are treated as mode 0.		Sufficient space is allocated to the return value		to hold the suppressed trailing zeros.	*/	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,		spec_case, try_quick;	long L;#ifndef Sudden_Underflow	int denorm;	unsigned long x;#endif	Bigint *b, *b1, *delta, *mlo, *mhi, *S;	double ds;	Dul d2, eps;	char *s, *s0;	static Bigint *result;	static int result_k;	Dul d;	d.d = darg;	if (result) {		result->k = result_k;		result->maxwds = 1 << result_k;		Bfree(result);		result = 0;		}	if (word0(d) & Sign_bit) {		/* set sign for everything, including 0's and NaNs */		*sign = 1;		word0(d) &= ~Sign_bit;	/* clear sign bit */		}	else		*sign = 0;#if defined(IEEE_Arith) + defined(VAX)#ifdef IEEE_Arith	if ((word0(d) & Exp_mask) == Exp_mask)#else	if (word0(d)  == 0x8000)#endif		{		/* Infinity or NaN */		*decpt = 9999;		s =#ifdef IEEE_Arith			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :#endif				"NaN";		if (rve)			*rve =#ifdef IEEE_Arith				s[3] ? s + 8 :#endif						s + 3;		return s;		}#endif#ifdef IBM	d.d += 0; /* normalize */#endif	if (!d.d) {		*decpt = 1;		s = "0";		if (rve)			*rve = s + 1;		return s;		}	b = d2b(d.d, &be, &bbits);#ifdef Sudden_Underflow	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));#else	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {#endif		d2.d = d.d;		word0(d2) &= Frac_mask1;		word0(d2) |= Exp_11;#ifdef IBM		if (j = 11 - hi0bits(word0(d2) & Frac_mask))			d2.d /= 1 << j;#endif		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5		 * log10(x)	 =  log(x) / log(10)		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)		 *		 * This suggests computing an approximation k to log10(d) by		 *		 * k = (i - Bias)*0.301029995663981		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );		 *		 * We want k to be too large rather than too small.		 * The error in the first-order Taylor series approximation		 * is in our favor, so we just round up the constant enough		 * to compensate for any error in the multiplication of		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,		 * adding 1e-13 to the constant term more than suffices.		 * Hence we adjust the constant term to 0.1760912590558.		 * (We could get a more accurate k by invoking log10,		 *  but this is probably not worthwhile.)		 */		i -= Bias;#ifdef IBM		i <<= 2;		i += j;#endif#ifndef Sudden_Underflow		denorm = 0;		}	else {		/* d is denormalized */		i = bbits + be + (Bias + (P-1) - 1);		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32			    : word1(d) << 32 - i;		d2.d = x;		word0(d2) -= 31*Exp_msk1; /* adjust exponent */		i -= (Bias + (P-1) - 1) + 1;		denorm = 1;		}#endif	ds = (d2.d-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;	k = floor(ds);	k_check = 1;	if (k >= 0 && k <= Ten_pmax) {		if (d.d < tens[k])			k--;		k_check = 0;		}	j = bbits - i - 1;	if (j >= 0) {		b2 = 0;		s2 = j;		}	else {		b2 = -j;		s2 = 0;		}	if (k >= 0) {		b5 = 0;		s5 = k;		s2 += k;		}	else {		b2 -= k;		b5 = -k;		s5 = 0;		}	if (mode < 0 || mode > 9)		mode = 0;	try_quick = 1;	if (mode > 5) {		mode -= 4;		try_quick = 0;		}	leftright = 1;	switch(mode) {		case 0:		case 1:			ilim = ilim1 = -1;			i = 18;			ndigits = 0;			break;		case 2:			leftright = 0;			/* no break */		case 4:			if (ndigits <= 0)				ndigits = 1;			ilim = ilim1 = i = ndigits;			break;		case 3:			leftright = 0;			/* no break */		case 5:			i = ndigits + k + 1;			ilim = i;			ilim1 = i - 1;			if (i <= 0)				i = 1;		}	j = sizeof(unsigned long);	for(result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j <= i;		j <<= 1) result_k++;	result = Balloc(result_k);	s = s0 = (char *)result;	if (ilim >= 0 && ilim <= Quick_max && try_quick) {			/* Try to get by with floating-point arithmetic. */			i = 0;		d2.d = d.d;		k0 = k;		ilim0 = ilim;		ieps = 2; /* conservative */		if (k > 0) {			ds = tens[k&0xf];			j = k >> 4;			if (j & Bletch) {				/* prevent overflows */				j &= Bletch - 1;				d.d /= bigtens[n_bigtens-1];				ieps++;				}			for(; j; j >>= 1, i++)				if (j & 1) {					ieps++;					ds *= bigtens[i];					}			d.d /= ds;			}		else if (j1 = -k) {			d.d *= tens[j1 & 0xf];			for(j = j1 >> 4; j; j >>= 1, i++)				if (j & 1) {					ieps++;					d.d *= bigtens[i];					}			}		if (k_check && d.d < 1. && ilim > 0) {			if (ilim1 <= 0)				goto fast_failed;			ilim = ilim1;			k--;			d.d *= 10.;			ieps++;			}		eps.d = ieps*d.d + 7.;		word0(eps) -= (P-1)*Exp_msk1;		if (ilim == 0) {			S = mhi = 0;			d.d -= 5.;			if (d.d > eps.d)				goto one_digit;			if (d.d < -eps.d)				goto no_digits;			goto fast_failed;			}#ifndef No_leftright		if (leftright) {			/* Use Steele & White method of only			 * generating digits needed.			 */			eps.d = 0.5/tens[ilim-1] - eps.d;			for(i = 0;;) {				L = floor(d.d);				d.d -= L;				*s++ = '0' + (int)L;				if (d.d < eps.d)					goto ret1;				if (1. - d.d < eps.d)					goto bump_up;				if (++i >= ilim)					break;				eps.d *= 10.;				d.d *= 10.;				}			}		else {#endif			/* Generate ilim digits, then fix them up. */			eps.d *= tens[ilim-1];			for(i = 1;; i++, d.d *= 10.) {				L = floor(d.d);				d.d -= L;				*s++ = '0' + (int)L;				if (i == ilim) {					if (d.d > 0.5 + eps.d)						goto bump_up;					else if (d.d < 0.5 - eps.d) {						while(*--s == '0');						s++;						goto ret1;						}					break;					}				}#ifndef No_leftright			}#endif fast_failed:		s = s0;		d.d = d2.d;		k = k0;		ilim = ilim0;		}	/* Do we have a "small" integer? */	if (be >= 0 && k <= Int_max) {		/* Yes. */		ds = tens[k];		if (ndigits < 0 && ilim <= 0) {			S = mhi = 0;			if (ilim < 0 || d.d <= 5*ds)				goto no_digits;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -