⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 moon.c

📁 这是一个同样来自贝尔实验室的和UNIX有着渊源的操作系统, 其简洁的设计和实现易于我们学习和理解
💻 C
字号:
#include "astro.h"double k1, k2, k3, k4;double mnom, msun, noded, dmoon;voidmoon(void){	Moontab *mp;	double dlong, lsun, psun;	double eccm, eccs, chp, cpe;	double v0, t0, m0, j0;	double arg1, arg2, arg3, arg4, arg5, arg6, arg7;	double arg8, arg9, arg10;	double dgamma, k5, k6;	double lterms, sterms, cterms, nterms, pterms, spterms;	double gamma1, gamma2, gamma3, arglat;	double xmp, ymp, zmp;	double obl2;/* *	the fundamental elements - all referred to the epoch of *	Jan 0.5, 1900 and to the mean equinox of date. */	dlong = 270.434164 + 13.1763965268*eday - .001133*capt2		 + 2.e-6*capt3;	argp = 334.329556 + .1114040803*eday - .010325*capt2		 - 12.e-6*capt3;	node = 259.183275 - .0529539222*eday + .002078*capt2		 + 2.e-6*capt3;	lsun = 279.696678 + .9856473354*eday + .000303*capt2;	psun = 281.220833 + .0000470684*eday + .000453*capt2		 + 3.e-6*capt3;	dlong = fmod(dlong, 360.);	argp = fmod(argp, 360.);	node = fmod(node, 360.);	lsun = fmod(lsun, 360.);	psun = fmod(psun, 360.);	eccm = 22639.550;	eccs = .01675104 - .00004180*capt;	incl = 18461.400;	cpe = 124.986;	chp = 3422.451;/* *	some subsidiary elements - they are all longitudes *	and they are referred to the epoch 1/0.5 1900 and *	to the fixed mean equinox of 1850.0. */	v0 = 342.069128 + 1.6021304820*eday;	t0 =  98.998753 + 0.9856091138*eday;	m0 = 293.049675 + 0.5240329445*eday;	j0 = 237.352319 + 0.0830912295*eday;/* *	the following are periodic corrections to the *	fundamental elements and constants. *	arg3 is the "Great Venus Inequality". */	arg1 = 41.1 + 20.2*(capt+.5);	arg2 = dlong - argp + 33. + 3.*t0 - 10.*v0 - 2.6*(capt+.5);	arg3 = dlong - argp + 151.1 + 16.*t0 - 18.*v0 - (capt+.5);	arg4 = node;	arg5 = node + 276.2 - 2.3*(capt+.5);	arg6 = 313.9 + 13.*t0 - 8.*v0;	arg7 = dlong - argp + 112.0 + 29.*t0 - 26.*v0;	arg8 = dlong + argp - 2.*lsun + 273. + 21.*t0 - 20.*v0;	arg9 = node + 290.1 - 0.9*(capt+.5);	arg10 = 115. + 38.5*(capt+.5);	arg1 *= radian;	arg2 *= radian;	arg3 *= radian;	arg4 *= radian;	arg5 *= radian;	arg6 *= radian;	arg7 *= radian;	arg8 *= radian;	arg9 *= radian;	arg10 *= radian;	dlong +=		   (0.84 *sin(arg1)		 +  0.31 *sin(arg2)		 + 14.27 *sin(arg3)		 +  7.261*sin(arg4)		 +  0.282*sin(arg5)		 +  0.237*sin(arg6)		 +  0.108*sin(arg7)		 +  0.126*sin(arg8))/3600.;	argp +=		 (- 2.10 *sin(arg1)		 -  0.118*sin(arg3)		 -  2.076*sin(arg4)		 -  0.840*sin(arg5)		 -  0.593*sin(arg6))/3600.;	node +=		   (0.63*sin(arg1)		 +  0.17*sin(arg3)		 + 95.96*sin(arg4)		 + 15.58*sin(arg5)		 +  1.86*sin(arg9))/3600.;	t0 +=		 (- 6.40*sin(arg1)		 -  1.89*sin(arg6))/3600.;	psun +=		   (6.40*sin(arg1)		 +  1.89*sin(arg6))/3600.;	dgamma = -  4.318*cos(arg4)		 -  0.698*cos(arg5)		 -  0.083*cos(arg9);	j0 +=		   0.33*sin(arg10);/* *	the following factors account for the fact that the *	eccentricity, solar eccentricity, inclination and *	parallax used by Brown to make up his coefficients *	are both wrong and out of date.  Brown did the same *	thing in a different way. */	k1 = eccm/22639.500;	k2 = eccs/.01675104;	k3 = 1. + 2.708e-6 + .000108008*dgamma;	k4 = cpe/125.154;	k5 = chp/3422.700;/* *	the principal arguments that are used to compute *	perturbations are the following differences of the *	fundamental elements. */	mnom = dlong - argp;	msun = lsun - psun;	noded = dlong - node;	dmoon = dlong - lsun;/* *	solar terms in longitude */	lterms = 0.0;	mp = moontab;	for(;;) {		if(mp->f == 0.0)			break;		lterms += sinx(mp->f,			mp->c[0], mp->c[1],			mp->c[2], mp->c[3], 0.0);		mp++;	}	mp++;/* *	planetary terms in longitude */	lterms += sinx(0.822, 0,0,0,0, t0-v0);	lterms += sinx(0.307, 0,0,0,0, 2.*t0-2.*v0+179.8);	lterms += sinx(0.348, 0,0,0,0, 3.*t0-2.*v0+272.9);	lterms += sinx(0.176, 0,0,0,0, 4.*t0-3.*v0+271.7);	lterms += sinx(0.092, 0,0,0,0, 5.*t0-3.*v0+199.);	lterms += sinx(0.129, 1,0,0,0, -t0+v0+180.);	lterms += sinx(0.152, 1,0,0,0, t0-v0);	lterms += sinx(0.127, 1,0,0,0, 3.*t0-3.*v0+180.);	lterms += sinx(0.099, 0,0,0,2, t0-v0);	lterms += sinx(0.136, 0,0,0,2, 2.*t0-2.*v0+179.5);	lterms += sinx(0.083, -1,0,0,2, -4.*t0+4.*v0+180.);	lterms += sinx(0.662, -1,0,0,2, -3.*t0+3.*v0+180.0);	lterms += sinx(0.137, -1,0,0,2, -2.*t0+2.*v0);	lterms += sinx(0.133, -1,0,0,2, t0-v0);	lterms += sinx(0.157, -1,0,0,2, 2.*t0-2.*v0+179.6);	lterms += sinx(0.079, -1,0,0,2, -8.*t0+6.*v0+162.6);	lterms += sinx(0.073, 2,0,0,-2, 3.*t0-3.*v0+180.);	lterms += sinx(0.643, 0,0,0,0, -t0+j0+178.8);	lterms += sinx(0.187, 0,0,0,0, -2.*t0+2.*j0+359.6);	lterms += sinx(0.087, 0,0,0,0, j0+289.9);	lterms += sinx(0.165, 0,0,0,0, -t0+2.*j0+241.5);	lterms += sinx(0.144, 1,0,0,0, t0-j0+1.0);	lterms += sinx(0.158, 1,0,0,0, -t0+j0+179.0);	lterms += sinx(0.190, 1,0,0,0, -2.*t0+2.*j0+180.0);	lterms += sinx(0.096, 1,0,0,0, -2.*t0+3.*j0+352.5);	lterms += sinx(0.070, 0,0,0,2, 2.*t0-2.*j0+180.);	lterms += sinx(0.167, 0,0,0,2, -t0+j0+178.5);	lterms += sinx(0.085, 0,0,0,2, -2.*t0+2.*j0+359.2);	lterms += sinx(1.137, -1,0,0,2, 2.*t0-2.*j0+180.3);	lterms += sinx(0.211, -1,0,0,2, -t0+j0+178.4);	lterms += sinx(0.089, -1,0,0,2, -2.*t0+2.*j0+359.2);	lterms += sinx(0.436, -1,0,0,2, 2.*t0-3.*j0+7.5);	lterms += sinx(0.240, 2,0,0,-2, -2.*t0+2.*j0+179.9);	lterms += sinx(0.284, 2,0,0,-2, -2.*t0+3.*j0+172.5);	lterms += sinx(0.195, 0,0,0,0, -2.*t0+2.*m0+180.2);	lterms += sinx(0.327, 0,0,0,0, -t0+2.*m0+224.4);	lterms += sinx(0.093, 0,0,0,0, -2.*t0+4.*m0+244.8);	lterms += sinx(0.073, 1,0,0,0, -t0+2.*m0+223.3);	lterms += sinx(0.074, 1,0,0,0, t0-2.*m0+306.3);	lterms += sinx(0.189, 0,0,0,0, node+180.);/* *	solar terms in latitude */	sterms = 0;	for(;;) {		if(mp->f == 0)			break;		sterms += sinx(mp->f,			mp->c[0], mp->c[1],			mp->c[2], mp->c[3], 0);		mp++;	}	mp++;	cterms = 0;	for(;;) {		if(mp->f == 0)			break;		cterms += cosx(mp->f,			mp->c[0], mp->c[1],			mp->c[2], mp->c[3], 0);		mp++;	}	mp++;	nterms = 0;	for(;;) {		if(mp->f == 0)			break;		nterms += sinx(mp->f,			mp->c[0], mp->c[1],			mp->c[2], mp->c[3], 0);		mp++;	}	mp++;/* *	planetary terms in latitude */	pterms =		   sinx(0.215, 0,0,0,0, dlong);/* *	solar terms in parallax */	spterms = 3422.700;	for(;;) {		if(mp->f == 0)			break;		spterms += cosx(mp->f,			mp->c[0], mp->c[1],			mp->c[2], mp->c[3], 0);		mp++;	}/* *	planetary terms in parallax */	spterms = spterms;/* *	computation of longitude */	lambda = (dlong + lterms/3600.)*radian;/* *	computation of latitude */	arglat = (noded + sterms/3600.)*radian;	gamma1 = 18519.700 * k3;	gamma2 = -6.241 * k3*k3*k3;	gamma3 = 0.004 * k3*k3*k3*k3*k3;	k6 = (gamma1 + cterms) / gamma1;	beta = k6 * (gamma1*sin(arglat) + gamma2*sin(3.*arglat)		 + gamma3*sin(5.*arglat) + nterms)		 + pterms;	if(flags['o'])		beta -= 0.6;	beta *= radsec;/* *	computation of parallax */	spterms = k5 * spterms *radsec;	hp = spterms + (spterms*spterms*spterms)/6.;	rad = hp/radsec;	rp = 1.;	semi = .0799 + .272453*(hp/radsec);	if(dmoon < 0.)		dmoon += 360.;	mag = dmoon/360.;/* *	change to equatorial coordinates */	lambda += phi;	obl2 = obliq + eps;	xmp = rp*cos(lambda)*cos(beta);	ymp = rp*(sin(lambda)*cos(beta)*cos(obl2) - sin(obl2)*sin(beta));	zmp = rp*(sin(lambda)*cos(beta)*sin(obl2) + cos(obl2)*sin(beta));	alpha = atan2(ymp, xmp);	delta = atan2(zmp, sqrt(xmp*xmp+ymp*ymp));	meday = eday;	mhp = hp;	geo();}doublesinx(double coef, int i, int j, int k, int m, double angle){	double x;	x = i*mnom + j*msun + k*noded + m*dmoon + angle;	x = coef*sin(x*radian);	if(i < 0)		i = -i;	for(; i>0; i--)		x *= k1;	if(j < 0)		j = -j;	for(; j>0; j--)		x *= k2;	if(k < 0)		k = -k;	for(; k>0; k--)		x *= k3;	if(m & 1)		x *= k4;	return x;}doublecosx(double coef, int i, int j, int k, int m, double angle){	double x;	x = i*mnom + j*msun + k*noded + m*dmoon + angle;	x = coef*cos(x*radian);	if(i < 0)		i = -i;	for(; i>0; i--)		x *= k1;	if(j < 0)		j = -j;	for(; j>0; j--)		x *= k2;	if(k < 0)		k = -k;	for(; k>0; k--)		x *= k3;	if(m & 1)		x *= k4;	return x;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -