⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 g726_16.c

📁 zigbee 飞思卡尔 音频传输 基于ucos的所有源码
💻 C
字号:
/* * This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use.  Users may copy or modify this source code without * charge. * * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun source code is provided with no support and without any obligation on * the part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California  94043 *//* 16kbps version created, used 24kbps code and changing as little as possible. * G.726 specs are available from ITU's gopher or WWW site (http://www.itu.ch) * If any errors are found, please contact me at mrand@tamu.edu *      -Marc Randolph *//* * g726_16.c * * Description: * * g723_16_encoder(), g723_16_decoder() * * These routines comprise an implementation of the CCITT G.726 16 Kbps * ADPCM coding algorithm.  Essentially, this implementation is identical to * the bit level description except for a few deviations which take advantage * of workstation attributes, such as hardware 2's complement arithmetic. * * The ITU-T G.726 coder is an adaptive differential pulse code modulation * (ADPCM) waveform coding algorithm, suitable for coding of digitized * telephone bandwidth (0.3-3.4 kHz) speech or audio signals sampled at 8 kHz. * This coder operates on a sample-by-sample basis. Input samples may be  * represented in linear PCM or companded 8-bit G.711 (m-law/A-law) formats * (i.e., 64 kbps). For 32 kbps operation, each sample is converted into a * 4-bit quantized difference signal resulting in a compression ratio of  * 2:1 over the G.711 format. For 24 kbps 40 kbps operation, the quantized * difference signal is 3 bits and 5 bits, respectively. * * $Log: g726_16.c,v $ * Revision 1.4  2002/11/20 04:29:13  robertj * Included optimisations for G.711 and G.726 codecs, thanks Ted Szoczei * * Revision 1.1  2002/02/11 23:24:23  robertj * Updated to openH323 v1.8.0 * * Revision 1.2  2002/02/10 21:14:54  dereks * Add cvs log history to head of the file. * Ensure file is terminated by a newline. * * * * */#include "g72x.h"#include "g726private.h"/* * Maps G.723_16 code word to reconstructed scale factor normalized log * magnitude values.  Comes from Table 11/G.726 */static short	_dqlntab[4] = { 116, 365, 365, 116}; /* Maps G.723_16 code word to log of scale factor multiplier. * * _witab[4] is actually {-22 , 439, 439, -22}, but FILTD wants it * as WI << 5  (multiplied by 32), so we'll do that here  */static short	_witab[4] = {-704, 14048, 14048, -704};/* * Maps G.723_16 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. *//* Comes from FUNCTF */static short	_fitab[4] = {0, 0xE00, 0xE00, 0};/* Comes from quantizer decision level tables (Table 7/G.726) */static int qtab_723_16[1] = {261};/* * g723_16_encoder() * * Encodes a linear PCM, A-law or u-law input sample and returns its 2-bit code. * Returns -1 if invalid input coding value. */intg726_16_encoder(	int		sl,	g726_state *state_ptr){	int		sezi;	int		sez=0;			/* ACCUM */	int		sei=0;	int		se=0;	int		d=0;				/* SUBTA */	int		y=0;				/* MIX */	int		i=0;	int		dq=0;	int		sr=0;				/* ADDB */	int		dqsez=0;			/* ADDC */	sl >>= 2;		/* sl of 14-bit dynamic range */	sezi = predictor_zero(state_ptr);	sez = sezi >> 1;	sei = sezi + predictor_pole(state_ptr);	se = sei >> 1;			/* se = estimated signal */	d = sl - se;			/* d = estimation diff. */	/* quantize prediction difference d */	y = step_size(state_ptr);	/* quantizer step size */	i = quantize(d, y, qtab_723_16, 1);  /* i = ADPCM code */	      /* Since quantize() only produces a three level output	       * (1, 2, or 3), we must create the fourth one on our own	       */	if (i == 3)                          /* i code for the zero region */	  if ((d & 0x8000) == 0)             /* If d > 0, i=3 isn't right... */	    i = 0;	    	dq = reconstruct(i & 2, _dqlntab[i], y); /* quantized diff. */	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */	dqsez = sr + sez - se;		/* pole prediction diff. */	update(y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);	return (i);}/* * g723_16_decoder() * * Decodes a 2-bit CCITT G.723_16 ADPCM code and returns * the resulting 16-bit linear PCM, A-law or u-law sample value. * -1 is returned if the output coding is unknown. */intg726_16_decoder(	int		i,	g726_state *state_ptr){	int		sezi = 0;	int		sez = 0;			/* ACCUM */	int		sei = 0;	int		se = 0;	int		y =0;				/* MIX */	int		dq = 0;	int		sr =0;				/* ADDB */	int		dqsez = 0;	i &= 0x03;			/* mask to get proper bits */	sezi = predictor_zero(state_ptr);	sez = sezi >> 1;	sei = sezi + predictor_pole(state_ptr);	se = sei >> 1;			/* se = estimated signal */	y = step_size(state_ptr);	/* adaptive quantizer step size */	dq = reconstruct(i & 0x02, _dqlntab[i], y); /* unquantize pred diff */	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */	dqsez = sr - se + sez;			/* pole prediction diff. */	update(y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);	return (sr << 2);	/* sr was of 14-bit dynamic range */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -