📄 g726_32.c
字号:
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g721.c
*
* Description:
*
* g721_encoder(), g721_decoder()
*
* These routines comprise an implementation of the CCITT G.721 ADPCM
* coding algorithm. Essentially, this implementation is identical to
* the bit level description except for a few deviations which
* take advantage of work station attributes, such as hardware 2's
* complement arithmetic and large memory. Specifically, certain time
* consuming operations such as multiplications are replaced
* with lookup tables and software 2's complement operations are
* replaced with hardware 2's complement.
*
* The deviation from the bit level specification (lookup tables)
* preserves the bit level performance specifications.
*
* As outlined in the G.721 Recommendation, the algorithm is broken
* down into modules. Each section of code below is preceded by
* the name of the module which it is implementing.
*
*/
//#include <audiofmt/st.h>
#include "g72x.h"
//#include "g726private.h"
//#include <audiofmt/libst.h>
static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
/*
* Maps G.721 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048};
/* Maps G.721 code word to log of scale factor multiplier. */
static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12};
/*
* Maps G.721 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
/*
* g726_32encoder()
*
* Encodes the input vale of linear PCM, A-law or u-law data sl and returns
* the resulting code. -1 is returned for unknown input coding value.
*/
int
g726_32encoder(int sl,struct g72x_state* state_ptr)
{
short sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short sr; /* ADDB */
short y; /* MIX */
short dqsez; /* ADDC */
short dq, i;
sl >>= 2; /* 14-bit dynamic range */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
d = sl - se; /* estimation difference */
/* quantize the prediction difference */
y = step_size(state_ptr); /* quantizer step size */
i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr + sez - se; /* pole prediction diff. */
update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g726_32decoder()
*
* Description:
*
* Decodes a 4-bit code of G.721 encoded data of i and
* returns the resulting linear PCM, A-law or u-law value.
* return -1 for unknown out_coding value.
*/
int
g726_32decoder(int i, struct g72x_state* state_ptr)
{
short sezi, sei, sez, se; /* ACCUM */
short y; /* MIX */
short sr; /* ADDB */
short dq;
short dqsez;
i &= 0x0f; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* dynamic quantizer step size */
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (sr << 2); /* sr was 14-bit dynamic range */
}
/*
#include <stdio.h>
struct g72x_state st;
struct g72x_state *p;
struct g72x_state st1;
struct g72x_state *p1;
void main(){
FILE *fp,*fp2,*fp1;
//short data,dout;
int out_de,out_e,out_en[250] ;
int i,j;
int data[250] = {-14980, -9688,-24456,-17456,-14372,-11584,-18368,-14172,-12472,-10584,-14628,-12136,-11080,-18120, -6340,-20212, -5728,-27608, -6972,-12784, -9704,-18616, -6588,-27568, -5680, 27984,-28448, 21580, 8944, 7096,-29320, 9812, 17416, 3340,-19444, 3120, 28440, -2424,-10432, -4152,-26368, -8848, -1032,-12040,-14752,-16712, 8544,-21328, -3152,-25032, 18672,-30544, 9336, 30488, 29568, 24656, 21592, 20776,-26096, 15428,-31616, 10328,-14376, 3944,-17600, -2308,-15184, -6936, 16520, 26808, -3312, 19392,-23392, 4500,-18784, 32528,-28140, 14272, 14672, -6960, -9600,-24096, 28856, 16784, 23704, -8176, 10128, 20448,-19152, 25812, 25840,-13052, 13344, 26196, -2620, 10512, 2000, 4120,-14924,-30904,-32508,-23944,-31932, 3800, 16964, 10800, 27364,-24256, 12832, -528, 20928, 16800, 4032, 5440, 24496, 15552,-15392, 25104, -9648,-16256, 22648,-27744, -1500,-17420,-24804, 1936,-27392, -2568, 20008,-32664,-19972, -704, 10976, 25828, 9024, -6032, 24336,-13904, 21724, 4296, 4556,-22480, 26664, -1968, 2108,-32224,-24464,-29544,-10508,-14880,-22832, -8832, 3136,-23900, 29520,-15152, 12224, 21524,-13640, 15352, 32664, 12684, -8840, 21440, -4324, 17712, 14028, 21728,-19272, 17608,-29000, -7260, 6196,-15408, 24432, 28096,-10536,-23432,-13536, 17976, 7816, 664, 14432,-32380,-28048,-32312, 132, -8388,-16048,-10280, 29528, -1392, 1708, 1832, 16420, 29680,-32448, 10392, 19664, 24840,-31428,-20644,-21428, 30892, 504, 20952, 1936,-23336, 23584, -1632,-31224,-27356,-19100, 17072, 1504, 30472,-22768,-18472,-17884, -2908, 11840, 8252, 9288,-16480, 2944,-31056, -256, 9140, 25120, -3968, -2980,-11392, 5624, 31524, 21384,-23572, -4356,-18164, 4488, 14220,-16624,-25088,-64, -80, -112, -172, -316, -836, -2256, -5932};
p = &st;
p1 = &st1;
g72x_init_state(p1);
g72x_init_state(p);*/
/* if ((fp = fopen("testport.wav", "rb")) == NULL) {
printf ("Could not read.\n");
return;
}
if ((fp2 = fopen("g721_out2", "wb")) == NULL) {
printf ("Could not create \"tstseq1.wav\".\n");
return;
}
for(i = 0;i<20;i++){
for(j = 0;j<80;j++){
fread(&data,2,1,fp);
out_e = (int)data;
out_en[j] = g721_encoder(out_e,p);
}
for(j = 0;j<80;j++){
out_de = g721_decoder(out_en[j],p1);
dout = (short)out_de;
fwrite(&dout,2,1,fp2);
}
}
fclose(fp);
fclose(fp2);
}
*//*
for(i=0;i<250;i++){
out_e = g721_encoder(data[i],p);
out_en[i] = g721_decoder(out_e,p1);
printf("%d,",out_en[i]);
}
}*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -