⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc4443-icmpv6(2006).txt

📁 本备忘录的状态 本文档讲述了一种Internet社区的Internet标准跟踪协议
💻 TXT
📖 第 1 页 / 共 3 页
字号:

   Description

   If an IPv6 node processing a packet finds a problem with a field in
   the IPv6 header or extension headers such that it cannot complete
   processing the packet, it MUST discard the packet and SHOULD
   originate an ICMPv6 Parameter Problem message to the packet's source,
   indicating the type and location of the problem.



Conta, et al.               Standards Track                    [Page 12]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


   Codes 1 and 2 are more informative subsets of Code 0.

   The pointer identifies the octet of the original packet's header
   where the error was detected.  For example, an ICMPv6 message with a
   Type field of 4, Code field of 1, and Pointer field of 40 would
   indicate that the IPv6 extension header following the IPv6 header of
   the original packet holds an unrecognized Next Header field value.

   Upper Layer Notification

   A node receiving this ICMPv6 message MUST notify the upper-layer
   process if the relevant process can be identified (see Section 2.4,
   (d)).

4. ICMPv6 Informational Messages

4.1.  Echo Request Message

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Identifier          |        Sequence Number        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Data ...
      +-+-+-+-+-

   IPv6 Fields:

   Destination Address

                  Any legal IPv6 address.

   ICMPv6 Fields:

   Type           128

   Code           0

   Identifier     An identifier to aid in matching Echo Replies
                  to this Echo Request.  May be zero.









Conta, et al.               Standards Track                    [Page 13]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


   Sequence Number

                  A sequence number to aid in matching Echo Replies
                  to this Echo Request.  May be zero.

   Data           Zero or more octets of arbitrary data.

   Description

   Every node MUST implement an ICMPv6 Echo responder function that
   receives Echo Requests and originates corresponding Echo Replies.  A
   node SHOULD also implement an application-layer interface for
   originating Echo Requests and receiving Echo Replies, for diagnostic
   purposes.

   Upper Layer Notification

   Echo Request messages MAY be passed to processes receiving ICMP
   messages.

4.2.  Echo Reply Message

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Identifier          |        Sequence Number        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Data ...
      +-+-+-+-+-

   IPv6 Fields:

   Destination Address

                  Copied from the Source Address field of the invoking
                  Echo Request packet.

   ICMPv6 Fields:

   Type           129

   Code           0

   Identifier     The identifier from the invoking Echo Request message.





Conta, et al.               Standards Track                    [Page 14]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


   Sequence Number

                  The sequence number from the invoking Echo Request
                  message.

   Data           The data from the invoking Echo Request message.

   Description

   Every node MUST implement an ICMPv6 Echo responder function that
   receives Echo Requests and originates corresponding Echo Replies.  A
   node SHOULD also implement an application-layer interface for
   originating Echo Requests and receiving Echo Replies, for diagnostic
   purposes.

   The source address of an Echo Reply sent in response to a unicast
   Echo Request message MUST be the same as the destination address of
   that Echo Request message.

   An Echo Reply SHOULD be sent in response to an Echo Request message
   sent to an IPv6 multicast or anycast address.  In this case, the
   source address of the reply MUST be a unicast address belonging to
   the interface on which the Echo Request message was received.

   The data received in the ICMPv6 Echo Request message MUST be returned
   entirely and unmodified in the ICMPv6 Echo Reply message.

   Upper Layer Notification

   Echo Reply messages MUST be passed to the process that originated an
   Echo Request message.  An Echo Reply message MAY be passed to
   processes that did not originate the Echo Request message.

   Note that there is no limitation on the amount of data that can be
   put in Echo Request and Echo Reply Messages.

5. Security Considerations

5.1.  Authentication and Confidentiality of ICMP Messages

   ICMP protocol packet exchanges can be authenticated using the IP
   Authentication Header [IPv6-AUTH] or IP Encapsulating Security
   Payload Header [IPv6-ESP].  Confidentiality for the ICMP protocol
   packet exchanges can be achieved using the IP Encapsulating Security
   Payload Header [IPv6-ESP].

   [SEC-ARCH] describes the IPsec handling of ICMP traffic in detail.




Conta, et al.               Standards Track                    [Page 15]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


5.2.  ICMP Attacks

   ICMP messages may be subject to various attacks.  A complete
   discussion can be found in the IP Security Architecture [IPv6-SA].  A
   brief discussion of these attacks and their prevention follows:

   1. ICMP messages may be subject to actions intended to cause the
      receiver to believe the message came from a different source from
      that of the message originator.  The protection against this
      attack can be achieved by applying the IPv6 Authentication
      mechanism [IPv6-AUTH] to the ICMP message.

   2. ICMP messages may be subject to actions intended to cause the
      message or the reply to it to go to a destination different from
      that of the message originator's intention.  The protection
      against this attack can be achieved by using the Authentication
      Header [IPv6-AUTH] or the Encapsulating Security Payload Header
      [IPv6-ESP].  The Authentication Header provides the protection
      against change for the source and the destination address of the
      IP packet.  The Encapsulating Security Payload Header does not
      provide this protection, but the ICMP checksum calculation
      includes the source and the destination addresses, and the
      Encapsulating Security Payload Header protects the checksum.
      Therefore, the combination of ICMP checksum and the Encapsulating
      Security Payload Header provides protection against this attack.
      The protection provided by the Encapsulating Security Payload
      Header will not be as strong as the protection provided by the
      Authentication Header.

   3. ICMP messages may be subject to changes in the message fields, or
      payload.  The authentication [IPv6-AUTH] or encryption [IPv6-ESP]
      of the ICMP message protects against such actions.

   4. ICMP messages may be used to attempt denial-of-service attacks by
      sending back to back erroneous IP packets.  An implementation that
      correctly followed Section 2.4, paragraph (f), of this
      specification, would be protected by the ICMP error rate limiting
      mechanism.

   5. The exception number 2 of rule e.3 in Section 2.4 gives a
      malicious node the opportunity to cause a denial-of-service attack
      to a multicast source.  A malicious node can send a multicast
      packet with an unknown destination option marked as mandatory,
      with the IPv6 source address of a valid multicast source.  A large
      number of destination nodes will send an ICMP Parameter Problem
      Message to the multicast source, causing a denial-of-service
      attack.  The way multicast traffic is forwarded by the multicast
      routers requires that the malicious node be part of the correct



Conta, et al.               Standards Track                    [Page 16]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


      multicast path, i.e., near to the multicast source.  This attack
      can only be avoided by securing the multicast traffic.  The
      multicast source should be careful while sending multicast traffic
      with the destination options marked as mandatory, because they can
      cause a denial-of-service attack to themselves if the destination
      option is unknown to a large number of destinations.

   6. As the ICMP messages are passed to the upper-layer processes, it
      is possible to perform attacks on the upper layer protocols (e.g.,
      TCP) with ICMP [TCP-attack].  It is recommended that the upper
      layers perform some form of validation of ICMP messages (using the
      information contained in the payload of the ICMP message) before
      acting upon them.  The actual validation checks are specific to
      the upper layers and are out of the scope of this specification.
      Protecting the upper layer with IPsec mitigates these attacks.

      ICMP error messages signal network error conditions that were
      encountered while processing an internet datagram.  Depending on
      the particular scenario, the error conditions being reported might
      or might not get solved in the near term.  Therefore, reaction to
      ICMP error messages may depend not only on the error type and code
      but also on other factors, such as the time at which the error
      messages are received, previous knowledge of the network error
      conditions being reported, and knowledge of the network scenario
      in which the receiving host is operating.

6. IANA Considerations

6.1.  Procedure for New ICMPV6 Type and Code Value Assignments

   The IPv6 ICMP header defined in this document contains the following
   fields that carry values assigned from IANA-managed name spaces: Type
   and Code.  Code field values are defined relative to a specific Type
   value.

   Values for the IPv6 ICMP Type fields are allocated using the
   following procedure:

   1. The IANA should allocate and permanently register new ICMPv6 type
      codes from IETF RFC publication.  This is for all RFC types,
      including standards track, informational, and experimental status,
      that originate from the IETF and have been approved by the IESG
      for publication.

   2. IETF working groups with working group consensus and area director
      approval can request reclaimable ICMPV6 type code assignments from
      the IANA.  The IANA will tag the values as "reclaimable in
      future".



Conta, et al.               Standards Track                    [Page 17]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


      The "reclaimable in the future" tag will be removed when an RFC is
      published that documents the protocol as defined in 1.  This will
      make the assignment permanent and update the reference on the IANA
      web pages.

      At the point where the ICMPv6 type values are 85% assigned, the
      IETF will review the assignments tagged "reclaimable in the
      future" and inform the IANA which ones should be reclaimed and
      reassigned.

   3. Requests for new ICMPv6 type value assignments from outside the
      IETF are only made through the publication of an IETF document,
      per 1 above.  Note also that documents published as "RFC Editor
      contributions" [RFC-3978] are not considered IETF documents.

   The assignment of new Code values for the Type values defined in this
   document require standards action or IESG approval.  The policy for
   assigning Code values for new IPv6 ICMP Types not defined in this
   document should be defined in the document defining the new Type
   values.

6.2.  Assignments for This Document

   The following has updated assignments located at:

      http://www.iana.org/assignments/icmpv6-parameters

   The IANA has reassigned ICMPv6 type 1 "Destination Unreachable" code
   2, which was unassigned in [RFC-2463], to:

         2 - Beyond scope of source address

   The IANA has assigned the following two new codes values for ICMPv6
   type 1 "Destination

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -