⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 syn04.htm

📁 vTools is a toolbox for Matlab 5.3 developed within the Department of Electrical Systems and A
💻 HTM
字号:
<html xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 9">
<meta name=Originator content="Microsoft Word 9">
<link rel=File-List href="./syn04_files/filelist.xml">
<link rel=Edit-Time-Data href="./syn04_files/editdata.mso">
<!--[if !mso]>
<style>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style>
<![endif]-->
<title>MvTools Help : Synthesis ---&gt; EMFC</title>
<style>
<!--
 /* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
	{mso-style-parent:"";
	margin:0cm;
	margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:"Times New Roman";
	mso-fareast-font-family:"Times New Roman";
	color:black;
	mso-ansi-language:EN-US;}
p.MsoHeader, li.MsoHeader, div.MsoHeader
	{margin:0cm;
	margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	tab-stops:center 240.95pt right 481.9pt;
	font-size:12.0pt;
	font-family:"Times New Roman";
	mso-fareast-font-family:"Times New Roman";
	color:black;
	mso-ansi-language:EN-US;}
p.MsoFooter, li.MsoFooter, div.MsoFooter
	{margin:0cm;
	margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	tab-stops:center 240.95pt right 481.9pt;
	font-size:12.0pt;
	font-family:"Times New Roman";
	mso-fareast-font-family:"Times New Roman";
	color:black;
	mso-ansi-language:EN-US;}
a:link, span.MsoHyperlink
	{color:blue;
	text-decoration:underline;
	text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
	{color:blue;
	text-decoration:underline;
	text-underline:single;}
p
	{margin-right:0cm;
	mso-margin-top-alt:auto;
	mso-margin-bottom-alt:auto;
	margin-left:0cm;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:"Times New Roman";
	mso-fareast-font-family:"Times New Roman";
	color:black;
	mso-ansi-language:EN-US;}
@page Section1
	{size:595.3pt 841.9pt;
	margin:70.85pt 2.0cm 2.0cm 2.0cm;
	mso-header-margin:35.4pt;
	mso-footer-margin:35.4pt;
	mso-page-numbers:48;
	mso-paper-source:0;}
div.Section1
	{page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
 <o:shapedefaults v:ext="edit" spidmax="1027"/>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <o:shapelayout v:ext="edit">
  <o:idmap v:ext="edit" data="1"/>
 </o:shapelayout></xml><![endif]-->
<meta name=Version content=8.0.13723>
<meta name=Date content="1/23/98">
<meta name=Template content="C:\Programmi\Microsoft Office\Office\HTML.DOT">
</head>

<body bgcolor="#fff3db" background="Immagini\sfondo.jpg" lang=EN-GB link=blue
vlink=blue style='tab-interval:36.0pt'>

<div class=Section1>

<p align=center style='text-align:center'><span lang=EN-US><img width=371
height=51 id="_x0000_i1025" src="Immagini\logosyn.jpg"></span></p>

<p align=center style='text-align:center'><span lang=EN-US><a
href="HelpDeskmvt.htm" title=" MVTOOLS HELP DESK "><b><i>MvTools Help Desk</i></b></a></span></p>

<p align=center style='text-align:center'><span lang=EN-US><img border=0
width=536 height=5 id="_x0000_i1026" src="Immagini\riga.gif"></span></p>

<p align=center style='text-align:center'><b><u><span lang=EN-US
style='font-size:13.5pt;color:red'>EMFC<o:p></o:p></span></u></b></p>

<p align=center style='text-align:center'><span lang=EN-US>(Pseudo State
Feedback)</span></p>

<p style='text-align:justify'><span lang=EN-US>The Explicit Model Following
Control belongs to the group of control laws that solves the general tracking
problem using the LQR (Linear Quadratic Regulator) approach. The purpose of
EMFC (and also of <a href="syn03.htm" title=" IMFC CONTROL help page">IMFC</a>)
is to find a closed loop control law that lets the plant (the current system)
track the dynamics of a reference model.</span></p>

<p style='text-align:justify'><span lang=EN-US>The EMFC technique computes the
optimal state feedback control law that minimizes the cost function </span></p>

<p align=center style='text-align:center'><span lang=EN-US style='color:red'>J
= integral{ (Y - Y</span><span lang=EN-US style='font-size:7.5pt;color:red'>m</span><span
lang=EN-US style='color:red'>)</span><sup><span lang=EN-US style='font-size:
10.0pt;mso-bidi-font-size:12.0pt;color:red'>T</span></sup><span lang=EN-US
style='font-size:7.5pt;color:red'> </span><span lang=EN-US style='color:red'>Q
(Y - Y</span><span lang=EN-US style='font-size:7.5pt;color:red'>m</span><span
lang=EN-US style='color:red'>) + U</span><sup><span lang=EN-US
style='font-size:10.0pt;mso-bidi-font-size:12.0pt;color:red'>T</span></sup><span
lang=EN-US style='color:red'> R U }dt<o:p></o:p></span></p>

<p><span lang=EN-US>with</span></p>

<div align=center>

<table border=1 cellpadding=0 width=451 style='width:270.6pt;mso-cellspacing:
 1.2pt;mso-padding-alt:3.0pt 3.0pt 3.0pt 3.0pt'>
 <tr>
  <td width="48%" style='width:48.0%;background:white;padding:3.0pt 3.0pt 3.0pt 3.0pt'>
  <p align=center style='text-align:center'><span lang=EN-US style='color:green'>Plant</span></p>
  </td>
  <td width="52%" style='width:52.0%;background:white;padding:3.0pt 3.0pt 3.0pt 3.0pt'>
  <p align=center style='text-align:center'><span lang=EN-US style='color:green'>Model</span></p>
  </td>
 </tr>
 <tr>
  <td width="48%" style='width:48.0%;background:white;padding:3.0pt 3.0pt 3.0pt 3.0pt'>
  <p align=center style='text-align:center'><span lang=EN-US>X<b><sup>'</sup></b>
  = A X + B U</span></p>
  <p align=center style='text-align:center'><span lang=EN-US>Y = C</span><span
  lang=EN-US style='font-size:7.5pt'> </span><span lang=EN-US>X</span></p>
  </td>
  <td width="52%" style='width:52.0%;background:white;padding:3.0pt 3.0pt 3.0pt 3.0pt'>
  <p align=center style='text-align:center'><span lang=EN-US>X<b><sup>'</sup></b></span><span
  lang=EN-US style='font-size:7.5pt'>m</span><span lang=EN-US> = A</span><span
  lang=EN-US style='font-size:7.5pt'>m</span><span lang=EN-US> X</span><span
  lang=EN-US style='font-size:7.5pt'>m</span><span lang=EN-US> + B</span><span
  lang=EN-US style='font-size:7.5pt'>m</span><span lang=EN-US> U</span><span
  lang=EN-US style='font-size:7.5pt'>m<o:p></o:p></span></p>
  <p align=center style='text-align:center'><span lang=EN-US>Y</span><span
  lang=EN-US style='font-size:7.5pt'>m</span><span lang=EN-US> = C</span><span
  lang=EN-US style='font-size:7.5pt'>m </span><span lang=EN-US>X</span><span
  lang=EN-US style='font-size:7.5pt'>m</span></p>
  </td>
 </tr>
</table>

</div>

<p style='margin:0cm;margin-bottom:.0001pt;text-align:justify'><span
lang=EN-US><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p>

<p style='margin:0cm;margin-bottom:.0001pt;text-align:justify'><span
lang=EN-US>The vector Y</span><span lang=EN-US style='font-size:7.5pt'>m</span><span
lang=EN-US> = C</span><span lang=EN-US style='font-size:7.5pt'>m </span><span
lang=EN-US>X</span><span lang=EN-US style='font-size:7.5pt'>m </span><span
lang=EN-US>represents the reference command for the plant outputs. The cost
function weighs, by means of the matrix Q, the error between the output vectors
of the two systems. It's important to remember that </span><span lang=EN-US
style='color:red'>the model is really present</span><span lang=EN-US> inside
the control loop so the vector X</span><span lang=EN-US style='font-size:7.5pt'>m</span><span
lang=EN-US> is actually available.</span></p>

<p style='margin:0cm;margin-bottom:.0001pt;text-align:justify'><span
lang=EN-US>For this reason, the augmented system has state </span><span
lang=EN-US style='color:red'>x = [ X ; X</span><span lang=EN-US
style='font-size:7.5pt;color:red'>m</span><span lang=EN-US style='color:red'> ]</span><span
lang=EN-US> and output </span><span lang=EN-US style='color:red'>e = [ Y - Y</span><span
lang=EN-US style='font-size:7.5pt;color:red'>m</span><span lang=EN-US
style='color:red'> ]</span><span lang=EN-US style='color:windowtext'>, so</span><span
lang=EN-US> the cost function J can be transformed in</span></p>

<p align=center style='text-align:center'><span lang=EN-US style='color:red'>J
= integral{ x</span><sup><span lang=EN-US style='font-size:10.0pt;mso-bidi-font-size:
12.0pt;color:red'>T</span></sup><span lang=EN-US style='color:red'>[ C , -C</span><span
lang=EN-US style='font-size:7.5pt;color:red'>m</span><span lang=EN-US
style='color:red'> ]</span><sup><span lang=EN-US style='font-size:10.0pt;
mso-bidi-font-size:12.0pt;color:red'>T</span></sup><b><sup><span lang=EN-US
style='font-size:7.5pt;color:red'> </span></sup></b><span lang=EN-US
style='color:red'>Q [ C , -C</span><span lang=EN-US style='font-size:7.5pt;
color:red'>m</span><span lang=EN-US style='color:red'> ] x + U</span><sup><span
lang=EN-US style='font-size:10.0pt;mso-bidi-font-size:12.0pt;color:red'>T</span></sup><span
lang=EN-US style='color:red'> R U }dt<o:p></o:p></span></p>

<p style='text-align:justify'><span lang=EN-US>In order that </span><span
lang=EN-US style='color:red'>Y </span><span lang=EN-US style='font-family:Symbol;
color:red;mso-char-type:symbol;mso-symbol-font-family:Symbol'><span
style='mso-char-type:symbol;mso-symbol-font-family:Symbol'>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -