📄 algorithms in c++, third edition,part 5,code.txt
字号:
qp[pq[i]] = i; qp[pq[j]] = j; }
void fixUp(int k)
{ while (k > 1 && a[pq[(k+d-2)/d]] > a[pq[k]])
{ exch(k, (k+d-2)/d); k = (k+d-2)/d; } }
void fixDown(int k, int N)
{ int j;
while ((j = d*(k-1)+2) <= N)
{
for (int i = j+1; i < j+d && i <= N; i++)
if (a[pq[j]] > a[pq[i]]) j = i;
if (!(a[pq[k]] > a[pq[j]])) break;
exch(k, j); k = j;
}
}
public:
PQi(int N, const vector<keyType> &a, int d = 3) :
a(a), pq(N+1, 0), qp(N+1, 0), N(0), d(d) { }
int empty() const { return N == 0; }
void insert(int v)
{ pq[++N] = v; qp[v] = N; fixUp(N); }
int getmin()
{ exch(1, N); fixDown(1, N-1); return pq[N--]; }
void lower(int k)
{ fixUp(qp[k]); }
};
----------
CHAPTER 21. Shortest Paths
-----
template <class Graph, class Edge> class SPT
{ const Graph &G;
vector<double> wt;
vector<Edge *> spt;
public:
SPT(const Graph &G, int s) : G(G),
spt(G.V()), wt(G.V(), G.V())
{ PQi<double> pQ(G.V(), wt);
for (int v = 0; v < G.V(); v++) pQ.insert(v);
wt[s] = 0.0; pQ.lower(s);
while (!pQ.empty())
{ int v = pQ.getmin(); // wt[v] = 0.0;
if (v != s && spt[v] == 0) return;
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
{ int w = e->w();
double P = wt[v] + e->wt();
if (P < wt[w])
{ wt[w] = P; pQ.lower(w); spt[w] = e; }
}
}
}
Edge *pathR(int v) const { return spt[v]; }
double dist(int v) const { return wt[v]; }
};
-----
template <class Graph, class Edge> class SPall
{
public:
SPall(const Graph &);
Edge *path(int, int) const;
Edge *pathR(int, int) const;
double dist(int, int) const;
};
-----
template <class Graph, class Edge>
double diameter(Graph &G)
{ int vmax = 0, wmax = 0;
allSP<Graph, Edge> all(G);
for (int v = 0; v < G.V(); v++)
for (int w = 0; w < G.V(); w++)
if (all.path(v, w))
if (all.dist(v, w) > all.dist(vmax, wmax))
{ vmax = v; wmax = w; }
int v = vmax; cout << v;
while (v != wmax)
{ v = all.path(v, wmax)->w(); cout << "-" << v; }
return all.dist(vmax, wmax);
}
-----
#include "SPT.cc"
template <class Graph, class Edge> class allSP
{ const Graph &G;
vector< SPT<Graph, Edge> *> A;
public:
allSP(const Graph &G) : G(G), A(G.V())
{ for (int s = 0; s < G.V(); s++)
A[s] = new SPT<Graph, Edge>(G, s); }
Edge *pathR(int s, int t) const
{ return A[s]->pathR(t); }
double dist(int s, int t) const
{ return A[s]->dist(t); }
};
-----
template <class Graph, class Edge> class allSP
{ const Graph &G;
vector <vector <Edge *> > p;
vector <vector <double> > d;
public:
allSP(const Graph &G) : G(G), p(G.V()), d(G.V())
{ int V = G.V();
for (int i = 0; i < V; i++)
{ p[i].assign(V, 0); d[i].assign(V, V); }
for (int s = 0; s < V; s++)
for (int t = 0; t < V; t++)
if (G.edge(s, t))
{ p[s][t] = G.edge(s, t);
d[s][t] = G.edge(s, t)->wt(); }
for (int s = 0; s < V; s++) d[s][s] = 0;
for (int i = 0; i < V; i++)
for (int s = 0; s < V; s++)
if (p[s][i])
for (int t = 0; t < V; t++)
if (s != t)
if (d[s][t] > d[s][i] + d[i][t])
{ p[s][t] = p[s][i];
d[s][t] = d[s][i] + d[i][t]; }
}
Edge *path(int s, int t) const
{ return p[s][t]; }
double dist(int s, int t) const
{ return d[s][t]; }
};
-----
#include "dagTS.cc"
template <class Graph, class Edge> class LPTdag
{ const Graph &G;
vector<double> wt;
vector<Edge *> lpt;
public:
LPTdag(const Graph &G) : G(G),
lpt(G.V()), wt(G.V(), 0)
{ int j, w;
dagTS<Graph> ts(G);
for (int v = ts[j = 0]; j < G.V(); v = ts[++j])
{ typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
if (wt[w = e->w()] < wt[v] + e->wt())
{ wt[w] = wt[v] + e->wt(); lpt[w] = e; }
}
}
Edge *pathR(int v) const { return lpt[v]; }
double dist(int v) const { return wt[v]; }
};
-----
template <class Graph, class Edge> class allSPdag
{ const Graph &G;
vector <vector <Edge *> > p;
vector <vector <double> > d;
void dfsR(int s)
{ typename Graph::adjIterator A(G, s);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
{ int t = e->w(); double w = e->wt();
if (d[s][t] > w)
{ d[s][t] = w; p[s][t] = e; }
if (p[t][t] == 0) dfsR(t);
for (int i = 0; i < G.V(); i++)
if (p[t][i])
if (d[s][i] > w + d[t][i])
{ d[s][i] = w + d[t][i]; p[s][i] = e; }
}
}
public:
allSPdag(const Graph &G) : G(G),
p(G.V()), d(G.V())
{ int V = G.V();
for (int i = 0; i < V; i++)
{ p[i].assign(V, 0); d[i].assign(V, V); }
for (int s = 0; s < V; s++)
if (p[s][s] == 0) dfsR(s);
}
Edge *path(int s, int t) const
{ return p[s][t]; }
double dist(int s, int t) const
{ return d[s][t]; }
};
-----
#include "GRAPHbasic.cc"
#include "GRAPHio.cc"
#include "LPTdag.cc"
typedef WeightedEdge EDGE;
typedef DenseGRAPH<EDGE> GRAPH;
int main(int argc, char *argv[])
{ int i, s, t, N = atoi(argv[1]);
double duration[N];
GRAPH G(N, true);
for (int i = 0; i < N; i++)
cin >> duration[i];
while (cin >> s >> t)
G.insert(new EDGE(s, t, duration[s]));
LPTdag<GRAPH, EDGE> lpt(G);
for (i = 0; i < N; i++)
cout << i << " " << lpt.dist(i) << endl;
}
-----
SPT(Graph &G, int s) : G(G),
spt(G.V()), wt(G.V(), G.V())
{ QUEUE<int> Q; int N = 0;
wt[s] = 0.0;
Q.put(s); Q.put(G.V());
while (!Q.empty())
{ int v;
while ((v = Q.get()) == G.V())
{ if (N++ > G.V()) return; Q.put(G.V()); }
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
{ int w = e->w();
double P = wt[v] + e->wt();
if (P < wt[w])
{ wt[w] = P; Q.put(w); spt[w] = e; }
}
}
}
----------
CHAPTER 22. Network Flow
-----
template <class Graph, class Edge> class check
{
public:
static int flow(Graph &G, int v)
{ int x = 0;
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
x += e->from(v) ? e->flow() : -e->flow();
return x;
}
static bool flow(Graph &G, int s, int t)
{
for (int v = 0; v < G.V(); v++)
if ((v != s) && (v != t))
if (flow(G, v) != 0) return false;
int sflow = flow(G, s);
if (sflow < 0) return false;
if (sflow + flow(G, t) != 0) return false;
return true;
}
};
-----
class EDGE
{ int pv, pw, pcap, pflow;
public:
EDGE(int v, int w, int cap) :
pv(v), pw(w), pcap(cap), pflow(0) { }
int v() const { return pv; }
int w() const { return pw; }
int cap() const { return pcap; }
int flow() const { return pflow; }
bool from (int v) const
{ return pv == v; }
int other(int v) const
{ return from(v) ? pw : pv; }
int capRto(int v) const
{ return from(v) ? pflow : pcap - pflow; }
void addflowRto(int v, int d)
{ pflow += from(v) ? -d : d; }
};
-----
template <class Graph, class Edge> class MAXFLOW
{ const Graph &G;
int s, t;
vector<int> wt;
vector<Edge *> st;
int ST(int v) const { return st[v]->other(v); }
void augment(int s, int t)
{ int d = st[t]->capRto(t);
for (int v = ST(t); v != s; v = ST(v))
if (st[v]->capRto(v) < d)
d = st[v]->capRto(v);
st[t]->addflowRto(t, d);
for (int v = ST(t); v != s; v = ST(v))
st[v]->addflowRto(v, d);
}
bool pfs();
public:
MAXFLOW(const Graph &G, int s, int t) : G(G),
s(s), t(t), st(G.V()), wt(G.V())
{ while (pfs()) augment(s, t); }
};
-----
template <class Graph, class Edge>
bool MAXFLOW<Graph, Edge>::pfs()
{ PQi<int> pQ(G.V(), wt);
for (int v = 0; v < G.V(); v++)
{ wt[v] = 0; st[v] = 0; pQ.insert(v); }
wt[s] = -M; pQ.lower(s);
while (!pQ.empty())
{ int v = pQ.getmin(); wt[v] = -M;
if (v == t || (v != s && st[v] == 0)) break;
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
{ int w = e->other(v);
int cap = e->capRto(w);
int P = cap < -wt[v] ? cap : -wt[v];
if (cap > 0 && -P < wt[w])
{ wt[w] = -P; pQ.lower(w); st[w] = e; }
}
}
return st[t] != 0;
}
-----
template <class Graph, class Edge> class MAXFLOW
{ const Graph &G;
int s, t;
vector<int> h, wt;
void initheights();
public:
MAXFLOW(const Graph &G, int s, int t) : G(G),
s(s), t(t), h(G.V()), wt(G.V(), 0)
{ initheights();
GQ gQ(G.V());
gQ.put(s); wt[t] = -(wt[s] = M*G.V());
while (!gQ.empty())
{ int v = gQ.get();
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
{ int w = e->other(v);
int cap = e->capRto(w);
int P = cap < wt[v] ? cap : wt[v];
if (P > 0 && v == s || h[v] == h[w]+1)
{ e->addflowRto(w, P);
wt[v] -= P; wt[w] += P;
if ((w != s) && (w != t)) gQ.put(w); }
}
if (v != s && v != t && wt[v] > 0)
{ h[v]++; gQ.put(v); }
}
}
};
-----
#include "MAXFLOW.cc"
template <class Graph, class Edge> class FEASIBLE
{ const Graph &G;
void freeedges(const Graph &F, int v)
{ typename Graph::adjIterator A(F, v);
for (EDGE* e = A.beg(); !A.end(); e = A.nxt())
delete e;
}
public:
FEASIBLE(const Graph &G, vector<int> sd) : G(G)
{
Graph F(G.V()+2);
for (int v = 0; v < G.V(); v++)
{
typename Graph::adjIterator A(G, v);
for (EDGE* e = A.beg(); !A.end(); e = A.nxt())
F.insert(e);
}
int s = G.V(), t = G.V()+1;
for (int i = 0; i < G.V(); i++)
if (sd[i] >= 0)
F.insert(new EDGE(s, i, sd[i]));
else
F.insert(new EDGE(i, t, -sd[i]));
MAXFLOW<Graph, Edge>(F, s, t);
freeedges(F, s); freeedges(F, t);
}
};
-----
#include "GRAPHbasic.cc"
#include "MAXFLOW.cc"
int main(int argc, char *argv[])
{ int s, t, N = atoi(argv[1]);
GRAPH<EDGE> G(2*N+2);
for (int i = 0; i < N; i++)
G.insert(new EDGE(2*N, i, 1));
while (cin >> s >> t)
G.insert(new EDGE(s, t, 1));
for (int i = N; i < 2*N; i++)
G.insert(new EDGE(i, 2*N+1, 1));
MAXFLOW<GRAPH<EDGE>, EDGE>(G, 2*N, 2*N+1);
for (int i = 0; i < N; i++)
{
GRAPH<EDGE>::adjIterator A(G, i);
for (EDGE* e = A.beg(); !A.end(); e = A.nxt())
if (e->flow() == 1 && e->from(i))
cout << e->v() << "-" << e->w() << endl;
}
}
-----
static int cost(Graph &G)
{ int x = 0;
for (int v = 0; v < G.V(); v++)
{
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
if (e->from(v) && e->costRto(e->w()) < C)
x += e->flow()*e->costRto(e->w());
}
return x;
}
-----
template <class Graph, class Edge> class MINCOST
{ const Graph &G;
int s, t;
vector<int> wt;
vector <Edge *> st;
int ST(int v) const;
void augment(int, int);
int negcyc(int);
int negcyc();
public:
MINCOST(const Graph &G, int s, int t) : G(G),
s(s), t(t), st(G.V()), wt(G.V())
{ MAXFLOW<Graph, Edge>(G, s, t);
for (int x = negcyc(); x != -1; x = negcyc())
{ augment(x, x); }
}
};
-----
int phiR(int v)
{
if (mark[v] == valid) return phi[v];
phi[v] = phiR(ST(v)) - st[v]->costRto(v);
mark[v] = valid;
return phi[v];
}
-----
int lca(int v, int w)
{ mark[v] = ++valid; mark[w] = valid;
while (v != w)
{
if (v != t) v = ST(v);
if (v != t && mark[v] == valid) return v;
mark[v] = valid;
if (w != t) w = ST(w);
if (w != t && mark[w] == valid) return w;
mark[w] = valid;
}
return v;
}
Edge *augment(Edge *x)
{ int v = x->v(), w = x->w(); int r = lca(v, w);
int d = x->capRto(w);
for (int u = w; u != r; u = ST(u))
if (st[u]->capRto(ST(u)) < d)
d = st[u]->capRto(ST(u));
for (int u = v; u != r; u = ST(u))
if (st[u]->capRto(u) < d)
d = st[u]->capRto(u);
x->addflowRto(w, d); Edge* e = x;
for (int u = w; u != r; u = ST(u))
{ st[u]->addflowRto(ST(u), d);
if (st[u]->capRto(ST(u)) == 0) e = st[u]; }
for (int u = v; u != r; u = ST(u))
{ st[u]->addflowRto(u, d);
if (st[u]->capRto(u) == 0) e = st[u]; }
return e;
}
-----
bool onpath(int a, int b, int c)
{
for (int i = a; i != c; i = ST(i))
if (i == b) return true;
return false;
}
void reverse(int u, int x)
{ Edge *e = st[u];
for (int i = ST(u); i != x; i = ST(i))
{ Edge *y = st[i]; st[i] = e; e = y; }
}
void update(Edge *w, Edge *y)
{ int u = y->w(), v = y->v(), x = w->w();
if (st[x] != w) x = w->v();
int r = lca(u, v);
if (onpath(u, x, r))
{ reverse(u, x); st[u] = y; return; }
if (onpath(v, x, r))
{ reverse(v, x); st[v] = y; return; }
}
-----
int costR(Edge *e, int v)
{ int R = e->cost() + phi[e->w()] - phi[e->v()];
return e->from(v) ? R : -R; }
Edge *besteligible()
{ Edge *x = 0;
for (int v = 0, min = C*G.V(); v < G.V(); v++)
{
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
if (e->capRto(e->other(v)) > 0)
if (e->capRto(v) == 0)
if (costR(e, v) < min)
{ x = e; min = costR(e, v); }
}
return x;
}
-----
template <class Graph, class Edge> class MINCOST
{ const Graph &G; int s, t; int valid;
vector<Edge *> st; vector<int> mark, phi;
void dfsR(Edge);
int ST(int);
int phiR(int);
int lca(int, int); Edge *augment(Edge *);
bool onpath(int, int, int);
void reverse(int, int);
void update(Edge *, Edge *);
int costR(Edge *, int); Edge *besteligible();
public:
MINCOST(Graph &G, int s, int t) : G(G), s(s), t(t)
st(G.V()), mark(G.V(), -1), phi(G.V())
{
Edge *z = new EDGE(s, t, M*G.V(), C*G.V());
G.insert(z);
z->addflowto(t, z->cap());
dfsR(z);
for (valid = 1; ; valid++ )
{
phi[t] = z->costRto(s); mark[t] = valid;
for (int v = 0; v < G.V(); v++)
if (v != t) phi[v] = phiR(v);
Edge *x = besteligible();
if (costR(x, x->v()) == 0) break;
update(augment(x), x);
}
G.remove(z); delete z;
}
-----
int old = 0;
for (valid = 1; valid != old; )
{
old = valid;
for (int v = 0; v < G.V(); v++)
{
typename Graph::adjIterator A(G, v);
for (Edge* e = A.beg(); !A.end(); e = A.nxt())
if (e->capRto(e->other(v)) > 0)
if (e->capRto(v) == 0)
{ update(augment(e), e); valid++; }
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -