📄 apso.m
字号:
function [pso t i] = apso(max_gen,pop_size,part_size)
% FUNCTION PSO --------USE Particle Swarm Optimization Algorithm
%clear all
t=cputime;
D_max = 0.25;
D_min = 0.001;
E_max = 2;
E_min = 0.25;
Pm = 0.005;
%pop_size = 30; % pop_size 种群大小
%part_size = 30; % part_size 粒子大小,
Q = 10*part_size; % 划分的块数
gbest = zeros(1,part_size+1); % gbest 当前搜索到的最小的值
%max_gen = 30; % max_gen 最大迭代次数
region=zeros(part_size,2); % 设定搜索空间范围
%region=[-300,300;-300,300;-300,300;-300,300;-300,300;-300,300;-300,300;-300,300;-300,300;-300,300]; %区域 **每一维设定不同范围
% region=[-30,30;-30,30;-30,30;-30,30;-30,30;-30,30;-30,30;-30,30;-30,30;-30,30];
%region=[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3];
region=[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3];
mode='exploit';
rand('state',sum(100*clock)); % 重置随机数发生器状态
arr_present = ini_pos(pop_size,part_size,region); % present 当前位置,随机初始化,rand()的范围为0~1
v_max = 1;
v=ini_v(pop_size,part_size,v_max); % 初始化当前速度
pbest = zeros(pop_size,part_size+1); % pbest 粒子以前搜索到的最优值,最后一列包括这些值的适应度
w_max = 0.7; % w_max 权系数最大值
w_min = 0.05;
% **最大速度,为粒子的范围宽度
c1 = 2; % 学习因子
c2 = 2; % 学习因子
best_record = zeros(1,max_gen); % best_record记录最好的粒子的适应度。
% ————————————————————————
% 计算原始种群的适应度,及初始化
% ————————————————————————
arr_present(:,end)=ini_fit(arr_present,pop_size,part_size);
pbest = arr_present; %初始化各个粒子最优值
[best_value best_index] = min(arr_present(:,end)); %初始化全局最优,即适应度为全局最小的值,根据需要也可以选取为最大值
gbest = arr_present(best_index,:);
% i=1;
% while (i<=max_gen&abs(gbest(end))>0.01)
% i=i+1;
for i=1:max_gen
D = D_caculation(arr_present,region);
E = E_caculation(arr_present,Q,pop_size,region);
if D < D_min || E<E_min
mode='explore';
end
if D > D_max && E>E_max
mode='exploit';
end
if mode == 'exploit'
w = D*(w_max-w_min)/(D_max-D_min)+(D_max*w_min-D_min*w_max)/(D_max-D_min);
for j=1:pop_size
v(j,:) = w.*v(j,:)+c1.*rand.*(pbest(j,1:part_size)-arr_present(j,1:part_size))...
+c2.*rand.*(gbest(1:part_size)-arr_present(j,1:part_size)); % 粒子速度更新 (a)
% 判断v的大小,限制v的绝对值小于v_max————————————————————————————
c = find(abs(v)>v_max); %**最大速度设置,粒子的范围宽度
v(c) = sign(v(c))*v_max;
arr_present(j,1:part_size) = arr_present(j,1:part_size)+v(j,1:part_size); % 粒子位置更新 (b)
arr_present(j,1:part_size)=constr_pos(arr_present(j,1:part_size),region,part_size);
arr_present(j,end) = fitness(arr_present(j,1:part_size));
if (arr_present(j,end)<pbest(j,end)) % 根据条件更新pbest,如果是最小的值为小于号,相反则为大于号
pbest(j,:) = arr_present(j,:);
end
end
else
for j=1:pop_size
if rand<Pm
arr_present(j,1:part_size+1)=(region(1,2)-region(1,1))*(rand(1,part_size+1)-0.5*ones(1,part_size+1));
v(j,:)=v_max*(rand(1,part_size)-0.5*ones(1,part_size));
arr_present(j,end) = fitness(arr_present(j,1:part_size));
if (arr_present(j,end)<pbest(j,end)) % 根据条件更新pbest,如果是最小的值为小于号,相反则为大于号
pbest(j,:) = arr_present(j,:);
end
end
end
end
[best best_index] = min(pbest(:,end)); % 如果是最小的值为min,相反则为max
if best<gbest(end) % 如果当前最好的结果比以前的好,则更新最优值gbest,如果是最小的值为小于号,相反则为大于号
gbest = pbest(best_index,:);
end
best_record(i) = gbest(end);
end
% display(i)
pso = gbest;
display(gbest);
t=cputime-t
% ***************************************************************************
% 计算适应度
% ***************************************************************************
function fit = fitness(present)
[m n]=size(present);
fit=0;
temp=1;
for ik=1:n
fit=fit+present(:,ik)^2;
temp=temp*cos(present(:,ik)/ik);
end
fit=fit/4000-temp+1;
% [m n]=size(present);
% fit=20*exp(-0.2*sqrt(sum(present.^2)/n))+exp(1/n*sum(cos(present.*2*3.1415926)))-20-2.72828;
%%%%%%%%%%%
% fit=3*(1-present(1)).^2.*exp(-(present(1).^2) - (present(2)+1).^2) ... %**需要求极值的函数,本例即peaks函数
% - 10*(present(1)/5 - present(1).^3 - present(2).^5).*exp(-present(1).^2-present(2).^2) ...
% - 1/3*exp(-(present(1)+1).^2 - present(2).^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ini_present=ini_pos(pop_size,part_size,region)
ini_present = (region(1,2)-region(1,1))*(rand(pop_size,part_size+1)-0.5*ones(pop_size,part_size+1)); %初始化当前粒子位置,使其随机的分布在工作空间 %** 6即为自变量范围
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ini_velocity=ini_v(pop_size,part_size,v_max)
ini_velocity =v_max*(rand(pop_size,part_size)-0.5*ones(pop_size,part_size)); %初始化当前粒子速度,使其随机的分布在速度范围内
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function arr_fitness=ini_fit(pos_present,pop_size,part_size)
for k=1:pop_size
arr_fitness(k,1) = fitness(pos_present(k,1:part_size)); %计算原始种群的适应度
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pos_present=constr_pos(pos_present,region,part_size)
for ik = 1 : part_size
if pos_present(1,ik)<region(ik,1)
pos_present(1,ik)=region(ik,1);
end
if pos_present(1,ik)>region(ik,2)
pos_present(1,ik)=region(ik,2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function E = E_caculation(pos_position,Q,pop_size,region)
Z=zeros(Q);
for ik = 1:pop_size
Z(floor((pos_position(ik,1)-region(1,1))/(region(1,2)-region(1,1))*Q)+1)=Z(floor((pos_position(ik,1)-region(1,1))/(region(1,2)-region(1,1))*Q)+1)+1;
end
Z=Z/pop_size;
c=find(Z~=0);
E=-sum(Z(c).*log(Z(c)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function D = D_caculation(pos_position,region)
[pop_size part_size] = size(pos_position);
part_size = part_size-1;
for ikk = 1:part_size
pos_avr_D(1,ikk) = sum(pos_position(:,ikk))/pop_size;
end
for ik = 1:pop_size
pos_D(ik,1) = sqrt(sum((pos_position(ik,1:part_size)-pos_avr_D(1,:)).^2));
end
D = sum(pos_D(:,1))/pop_size/(2*sqrt(sum(region(:,2).^2)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -